How to achieve a McEliece-based Digital Signature Scheme

Nicolas Courtois

Matthieu Finiasz

Nicolas Sendrier

ASIACRYPT 2001 – Brisbane

McEliece in a nutshell

(Niederreiter version)

 \Rightarrow This scheme is equivalent to the original McEliece scheme, but is more practical.

From Public-key Cryptography to Digital Signature

- \Rightarrow A digital signature consists in adding a few bits to a file in order to prove both its origin and its content.
- ⇒ Any public key cryptosystem can be transformed in a signature scheme like this:

Using error-correcting codes. . .

To perform this with McEliece, one has to be able to decode any syndrome returned by the hash function.

 \triangle Niederreiter coding is not a one to one mapping. \Rightarrow some syndromes are not the image of a message

With the original parameters: t = 50, m = 10, n = 1024.

- \diamond there are 2^{500} different syndromes (of length 500)
- ♦ there are $\binom{1024}{50} \simeq 2^{284}$ sums of 50 columns of *H*

 \Rightarrow This makes a ratio of 1 decodable syndrome out of 2^{216} .

We need to:

- ♦ find a way to decode any syndrome
- ◊ or find a decodable syndrome related to the document

Solving this problem

 \Rightarrow we need to take advantage of the *t*-error decoding method

Find a way to decode more syndromes: decode syndromes corresponding to error patterns of greater weight

 \Rightarrow possible using exhaustive search

Find a decodable syndrome

- \Rightarrow Add a counter *i* to the document:
 - \diamond Hash the document and the counter at the same time: $[\cdots D \cdots][\cdot i \cdot] \longrightarrow h_i$
 - \diamond Try to decode each h_i until one is decodable
 - \diamond We denote i_0 the smallest index such that h_{i_0} is decodable

 \Rightarrow In both cases we need to change the parameters to obtain a better ratio.

Better parameters

The ratio of decodable syndromes is easy to calculate:

$$\mathcal{R} = \frac{\mathcal{N}_{dec}}{\mathcal{N}_{tot}} = \frac{\binom{n}{t}}{2^n} \underset{n \text{ large}}{\simeq} \frac{1}{t!}$$

 \Rightarrow Hash document+counter t! times in average to obtain a decodable syndrome

 \triangle Telling if a syndrome is decodable is as hard as decoding it

 \Rightarrow We need to perform t! decodings, each one having a complexity of $t^2(\log_2 n)^3$

n only has a small influence: we will choose t to have a reasonnable signature time. t shouldn't be greater than 10, preferably 9.

Secure parameters

We have a small t but still want a good security (about 2^{80} CPU operations) \Rightarrow n will be large

Number	r of	bir	nary
operations	for	an	attack

n	t = 9	t = 10
2^{13}	$2^{69.3}$	$2^{72.3}$
2^{14}	$2^{74.0}$	$2^{77.4}$
2^{15}	$2^{78.8}$	$2^{87.4}$
2^{16}	$2^{83.7}$	$2^{90.9}$
2^{17}	$2^{88.2}$	$2^{94.6}$

$$\begin{cases} t = 10 \text{ and } n = 15 \\ t = 9 \text{ and } n = 16 \quad \longleftarrow 10 \text{ times faster} \end{cases}$$

Signature size

 \Rightarrow we index all the words of weight 9 and length 2^{16} .

the counter i_0 with an average value of 9!

 \Rightarrow The counter must be present for verification. It can be made of fixed length.

 \Rightarrow Signature is in average 144 bits long.

Reducing the signature size. . .

Verification is very fast (summing 9 columns of H and hashing one file)

- ⇒ The signature can be shortened by omitting some information: verificator will then try all possible values
- \Rightarrow Signature will contain less than t positions

omitted	signature length		verification	
positions	partial	total	WF	time
0	125.5	144	9	$\sim \mu$ s
1	112.7	131	9	$\sim \mu$ s
2	99.7	118	2^{14}	\sim ms
3	86.5	105	2^{27}	$\sim 30 { m s}$
4	73.1	92	2^{40}	
5	59.4	77	2^{54}	

We can verify a signature of 105 bits in about 30 seconds.

Reducing more

We can reduce the signature size even more by giving only approximate positions \Rightarrow group the columns in small clusters of 16 columns

 \Rightarrow The matrix can easily be transformed with a Gaussian elimination (about 2^{24} column operations). We then have the same problem to solve.

 \Rightarrow We can get signatures of 81 bits.

Scalability

⇒ The signature algorithm is easily scalable. For one omitted position we have the following asymptotic values:

signature cost	$t!t^2m^3$
signature length	$\left (t-1)m + \log_2 t \right $
verification cost	t^2m
public key size	$tm2^m$
cost of best decoding attack	$2^{tm(1/2+o(1))}$

⇒ Security increases much faster than any other parameter

Conclusion

- ★ Signature using McEliece is possible!
- ★ The algorithm obtained is polymorphic. It gives:
 - \diamond either very short signatures of 81 bits
 - \diamond or short signatures (131 or 118 bits) with a faster verification
- \star the signature time is long (about 1 minute)
- \star the public key is large (1MB)
- ★ its security relies on well known hard problems
- \star it is easily scalable

