Short McEliece-based Digital Signatures

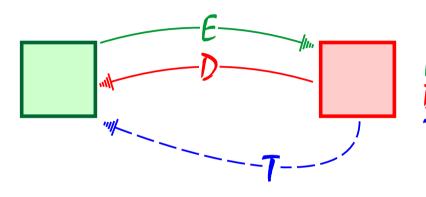
Nicolas Courtois

Matthieu Finiasz

Nicolas Sendrier

ISIT 2002 – Lausane

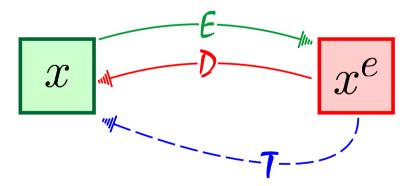
Public-key cryptography Some definitions



 \mathcal{E} = computationnaly easy one-way function \mathcal{D} = computationnaly difficult inversion problem \mathcal{T} = trap: secret inversion algorithm

For example with RSA we have:

$$\begin{aligned} \pmb{\mathcal{E}} &= \text{modular exponentiation: } x \mapsto x^e \\ \pmb{\mathcal{D}} &= e^{\text{th}}\text{-root extraction problem} \\ \pmb{\mathcal{T}} &= x \mapsto x^d \end{aligned}$$

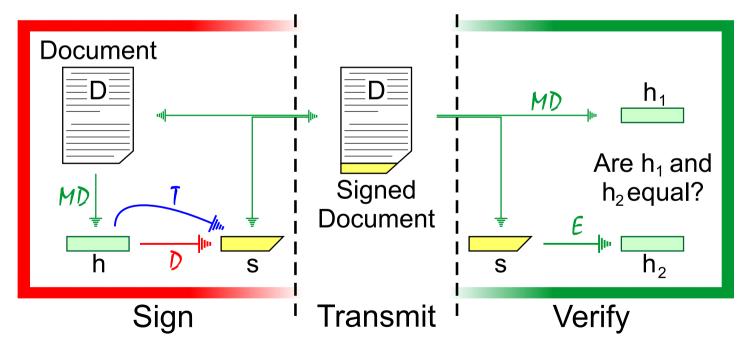


From one-way functions to signature

When \mathcal{A} signs a document D he computes $s(D, \mathcal{A})$ with the following properties:

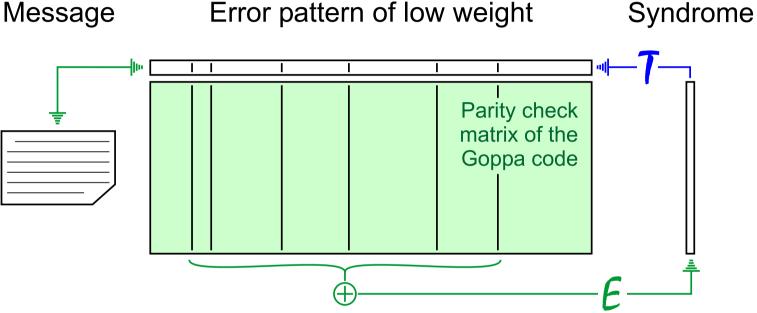
- $\diamond\,$ for a given D, only ${\mathcal A}$ can compute $s(D,{\mathcal A})$
- \diamond for a given σ it is impossible to find D such that $s(D,\mathcal{A})=\sigma$

It is possible to achieve this with a one-way hash function MD and a one-way function E with a trap T.



Using error-correcting codes: the McEliece cryptosystem

 \Rightarrow We can use Niederreiter's variant of the McEliece cryptosystem



To sign we will:

- \diamond hash the document (using whatever message digest MD) into a syndrome
- $\diamond\,$ decode this syndrome into an error pattern using the trap 7
- $\diamond\,$ use the equivalent message as signature

To verify the signature we simply compare the results of \mathcal{E} and \mathcal{MD}

Inversion problems

In this scheme we need to apply 7 to the result of MD

- \Rightarrow we need to decode a "random" syndrom
- \Rightarrow the trap 7 can decode syndromes corresponding to error patterns of Hamming weight $\leq t$
- \Rightarrow we can only decode a small ratio of syndromes

With the original McEliece parameters: t = 50, m = 10, n = 1024.

- \diamond there are 2^{500} different syndromes (of length 500)
- \diamond there are $\binom{1024}{50} \simeq 2^{284}$ error patterns of weight less than t
- \Rightarrow This makes a ratio of 1 decodable syndrome out of 2^{216} .

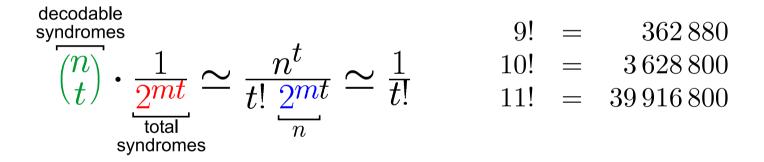
We need to:

- \diamond either change MD so that it returns decodable syndromes
- $\diamond\,$ or perform complete decoding

Complete decoding

To perform complete decoding we will need to increase this ratio

 \Rightarrow It will be greater for codes correcting less errors, as a Goppa code can correct approximately 1 syndrome out of t!



If we want the signature time to stay reasonnable we will need a t not greater than 10

Secure parameters

We have a small t but still want a good security (about 2^{80} CPU operations) $\Rightarrow n$ will be large

Number of binary			
operations for an attack			
(based on the attack by A. Canteaut and			
F. Chabaud [CC98])			

n	t = 9	t = 10
2^{13}	$2^{69.3}$	$2^{72.3}$
2^{14}	$2^{74.0}$	$2^{77.4}$
2^{15}	$2^{78.8}$	$2^{87.4}$
2^{16}	$2^{83.7}$	$2^{90.9}$
2^{17}	$2^{88.2}$	$2^{94.6}$

$$\begin{cases} t = 10 \text{ and } n = 15 \\ t = 9 \text{ and } n = 16 \quad \longleftarrow 10 \text{ times faster} \end{cases}$$

Signature algorithm

We use the following algorithm:

- $\diamond\,$ add a counter i to the document
- \diamond apply MD to the document and i at the same time to obtain a syndrome s_i
- \diamond try to decode s_i with **7**
- $\diamond\,$ if it does not work, increment i and try again

We call i_0 the smallest value of i for which the decoding is possible. \Rightarrow The signature will have to contain both $7(s_{i_0})$ and i_0 for the verification

Signature size

We index all the words of weight 9 and length 2^{16} . one index between 0 and $\binom{2^{16}}{9}$ 18.5 bits 125.5 bits the counter i_0 with an average value of 9!

⇒ The counter must be present for verification and can be made of constant length if necessary

 \Rightarrow Signature is in average 144 bits long.

Reducing the signature size. . .

Verification is very fast (summing 9 columns of H and hashing one file)

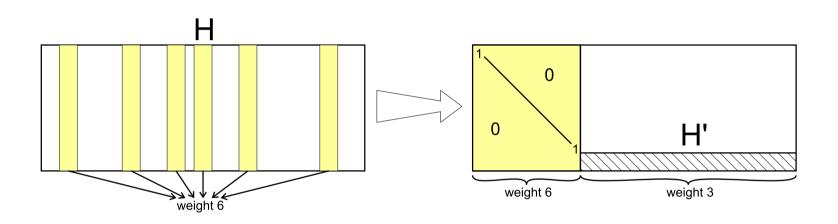
- ⇒ The signature can be shortened by omitting some information: verificator will then try all possible values
- \Rightarrow Signature will contain less than t positions

omitted	signature length		verification	
positions	partial	total	WF	time
0	125.5	144	9	$\sim \mu { m s}$
1	112.7	131	9	$\sim \mu$ s
2	99.7	118	2^{14}	\sim ms
3	86.5	105	2^{27}	$\sim 30 { m s}$
4	73.1	92	2^{40}	
5	59.4	77	2^{54}	

We can verify a signature of 105 bits in about 30 seconds.

Reducing more

We can reduce the signature size even more by giving only approximate positions \Rightarrow group the columns in small clusters of 16 columns



 \Rightarrow We decode 3 errors in a shortened code. The parity check matrix H' of this code is obtained by applying a Gaussian elimination to H (about 2^{24} column operations).

 \Rightarrow We can get signatures of 81 bits.

Scalability

⇒ The signature algorithm is easily scalable. For one omitted position we have the following asymptotic values:

signature cost	$t!t^2m^3$
signature length	$(t-1)m + \log_2 t$
verification cost	t^2m
public key size	$tm2^m$
cost of best decoding attack	$2^{tm(1/2+o(1))}$

⇒ Security increases much faster than any other parameter

Conclusion

- ★ Signature using McEliece is possible!
- ★ The algorithm obtained is polymorphic. It gives:
 - \diamond either very short signatures of 81 bits
 - \diamond or short signatures (131 or 118 bits) with a faster verification
- \star the signature time is long (about 1 minute)
- \star the public key is large (1MB)
- \star its security relies on well known hard problems
- \star it is easily scalable

