SHA-3 Proposal: FSB

D. Augot, M. Finiasz, P. Gaborit, S. Manuel, and N. Sendrier
High Overview of FSB

- FSB uses the Merkle-Damgård construction (chaining and padding), with a large internal state:
 - it uses a final compression function.

- the main compression function uses a one-way function from coding theory:
 - security reduction for inversion and collision search.
FSB’s Compression Function

Overview

The compression function of FSB is made of two steps:

▶ a non-linear bijective step,
▶ a linear compression step.

First the s input bits are transformed in a binary vector of length n and Hamming weight w:

▶ for efficiency we use regular words.

Then this vector is multiplied by a binary matrix \mathcal{H}

▶ $w \ll n$ so this is simply the XOR of w columns of \mathcal{H}.
In practice \mathcal{H} is a truncated quasi-cyclic matrix.
In practice \mathcal{H} is a truncated quasi-cyclic matrix

- \mathcal{H} is described by its first line: $\frac{n}{r}$ vectors of p bits.
- Columns of \mathcal{H} are truncated cyclic shifts of these binary vectors.
- Which vectors to choose and how much they should be shifted depends on the input:
 - w indexes are derived from 13 or 14 input bits each,
 - 8 IV/chaining bits and 5 or 6 message bits,
 - The i-th index is taken in the interval $\left[i\frac{n}{w}, (i+1)\frac{n}{w} - 1 \right]$,
 - The w indexes correspond to the w columns to XOR.
The best algorithms that can be used to attack FSB are:

- **Generalized birthday algorithm**
 - best algorithm for inversion and second preimage,
 - requires a lot of memory.

- **Information set decoding**
 - best algorithm for collision search,
 - yields strong constraints on the choice of r and w.

- **Proposed parameters have been chosen according to these algorithms, plus a security margin.**
Inverting the compression function requires to find w columns of \mathcal{H} which XOR to a target vector.

- this is an instance of the syndrome decoding problem,
- this problem is NP-complete for random matrices, but also for truncated quasi-cyclic matrices,
- well chosen values of p and r give supposedly hard instances of the problem.

Collisions require $2w$ columns of \mathcal{H} which XOR to 0.

- also an instance of the syndrome decoding problem,
- an “easier” instance in practice.
Security Reduction

▶ An important point is that these reductions are tight.

<table>
<thead>
<tr>
<th>adversary</th>
<th>best attack</th>
<th>reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>collision</td>
<td>ISD($n, r, 2w$) × 1</td>
<td>CSD($n, r, 2w$)/1</td>
</tr>
<tr>
<td>preimage</td>
<td>GBA(n, r, w) × 1</td>
<td>CSD(n, r, w)/1</td>
</tr>
<tr>
<td>second-preimage</td>
<td>GBA($n - w, r, w$) × 1</td>
<td>CSD($n - w, r - w, w$)/1</td>
</tr>
</tbody>
</table>

ISD = Information set decoding
GBA = Generalized birthday algorithm
CSD = Computationnal syndrome decoding.

▶ One call to the adversary solves the CSD problem, one call to ISD/GBA is enough to build an adversary.
Few constraints apply to the final compression function.

- it must not weaken the main compression function
 - any linear function is bad
 - simple truncation is impossible.

- it does not require collision resistance/one-wayness
 - collisions on the final compression do not directly lead to collisions on FSB

- Cryptographers and the NIST need to be convinced...
 - anything too simple should be avoided.
We propose to use Whirlpool [Rijmen, Barreto 2004]:

- The r-bit output of the main compression function is input as an r-bit message to Whirlpool
- the final output is a truncated Whirlpool hash.

This is a safe choice, not an efficiency oriented choice:

- Whirlpool is highly non-linear,
- we are confident that it is a secure hash function,
- attacks on Whirlpool would probably not affect our construction.
The main compression functions is very simple:

- shift and XOR w times some vectors
 - with precomputed shifts, only XORs are required.
- parameters of FSB are quite large
 - the XORs are expensive: 250 to 500 cycles/byte.

The description of FSB is large:

- 2 millions bits from digits of π define the vectors
 - this is a problem for constrained environments,
- using pseudo-random data could improve this but would loosen the security reduction.
The main interest of FSB is its compression function:

- inversion and collision search reduce to hard problems,
- it is slow, but much faster than most “similar designs,”
- it is very simple to describe/implement
 - only very basic operations are used,
- the description of FSB is large as “random bits” are needed.

Security reduction to hard problems comes at a cost, but it can be practical in many contexts.