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Abstract—We focus on the problem of recovering the length  Another approach to this problem consists in using in-
and synchronization of a linear block code from an intercepted formation set decoding techniques. The first to propose this
bitstream. We place ourselves in an operational context where the idea was Planquette [12] but with very limited applications to

intercepted bitstream contains a realistic noise level. We present block cod tructi Valembois lat di d thi
two algorithms, one due to Valembois and the other one brand OCk coae reconstruction. valembolis [ater rediscovere IS

new. They are both useful in different contexts, able to verify if technique and applied it efficiently to the reconstruction of
a given length/synchronization is correct. Using them, we were small block codes. The technique we present in Section 1I-B

able to practically recover the synchronization of several codes. s directly inspired from his work but applied to the problem

INTRODUCTION of finding the length/synchronization of a code.
Most digital communications are both encoded and en- |. DECIDING WHETHER AGIVEN LENGTH AND
crypted. For this reason, in order to be able to perform a SYNCHRONIZATION IS CORRECT

cryptanalysis, it is usually necessary to decode the intercepteﬁin this section

data. Most of the time, this data is encoded using a Standaégréam was transmitted through a binary symmetric channel

ized algorithm and it is thus assumed that the attacker cah . oss-over probability-. When trying to recover the
decode as efficiently as the legitimate recipient. However, i .

: . th/synchronization of a codg, the first step is to be able
can happen that non-standard techniques are used. In this ¢ s%

th d ruct bl ds to be add q ecide whether a given length/synchronization is correct
€ code reconstruction problem needs o be addresse .'0|]rhot. One must thus split the input bitstream into words of

this article, we only focus on communications encoded using given length, starting at the given synchronization, and

linear blotck/coo!tes, :]hui rec?r?stn:cttrl]on c?jnsw_i_tﬁ "}_ retcotverl n decide if the words obtained are indeed noisy codewords
a generator/parity check matrix of the code. 1he Nrst Sep gf5; s elements of a vector space with a small amount of

this reconstruction consists in recovering the code’s length ise). Of course, as the target vector space (the Eode are

synchronization. Most other articles dealing with code recoﬂ)'oking for) is unknown, this problem is hard. A simpler way

struction [6], [8], .[9]’ [14] consider this ipformation knownto look at it is to consider the dual problem: instead of looking
and only deal with the problem of finding a parity checlf

. . .~ tor a vector space directly, we can look for elements of its
matrix from noisy codewords. It appears that the most eﬁ'c'eghhogonal (these are, words of the dualyf Such orthogonal
techniques to recover the code’s length/synchronization :

also be used to reconsiruct the code. “¥Brds have a probability higher tha}no be orthogonal to a

. i . . . . noisy codeword (if the noise level is lower thgnof course).
This article is composed of three main sections. First, y ( % )

how that looking f ds in the dual code i Hici t\t,Yﬁ order to decide if a length/synchronization is correct, one
show that fooking for words n the dual code 1S SUtliclent 18, 4,5 |50k for dual words: as we will see, if such a word

decide if a specific length/synchronization is correct. Then, n be found then the length is correct (with a probability

the sec;ond part, .We present two very different techniques dbse to one) and the synchronization is probably not far from
searching words in the dual code. Eventually, we present SOME ect

experimental results and give estimates for the maximum no'seSup[:;ose the correct length/synchronizatiorfris, so) and
level allowing to recover a code’s length and synchronizatioH1e length/synchronization we are testing (i 37) OAfter

Previous works. This article is not the first to deal with splitting the input bitstream into words of length we build
the problem of finding the length/synchronization of a lineaa matrix G such that each line of is a word. This matrix
block code bitstream. For instance, a technique based on raf size M x n where M = |==] if ¢ is the length of the
computation is presented in [1], [2]. This technique consists intercepted bitstream. Looking for a word of the dual consists
computing, for all possible lengths and synchronizations, tlwe finding a word% of length n such thatG x h is of low
rank of the matrix formed with the noisy codewords. If theveight We distinguish three different cases.

noise level is low enough and the length and synchronization o

are correct, this matrix will not be of full rank. Finding the®: Correct length/synchronization: = n, s = so

correct length/synchronization then simply consists in finding In this case, each line df is a noisy codeword. Thus, if
the minimum of these ranks. When the level of noise startsis a word of the dual ofC of weight w the weight of the
to increase, it is necessary to compute the rank of sytroductG x h strongly depends om and follows a binomial
matrices and hope to find “low noise zones”. We compare odistribution, centered if (1 — (1 — 27)™), with a variance
experimental results with those taken from [1] in Section lllof 02 = %(1 —(1- 27-)2“’). This distribution is depicted

we consider that the received bit-
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in Figure 1 (dashed line). However, If' is not a word of
the dual ofC, whatever its weight, the weight of the product

G x b’ will follow a binomial distribution centered irizﬂ with 5
a variance®! (plain line in Figure 1). " W
If these two distributions have a small enough intersection, :

then it is possible to tell, with high probability, whether a word
h is in the dual ofC or not.

v

B. Correct length, incorrect synchronization:= ng, s # so  Figure 2. The matrixj when an incorrect synchronization was chosen.
50-5

In this case, each line af is composed of two different
codewords: the firsty — s mod n bits belong to one word, e
the remaining bits to the next one (see Figure 2). We take a

word 1 in the dual ofC and cyclicly shift it (to the right) by e —
sp — s positions to obtain a word. M

« If the support ofh is included in[sy — s,n — 1] or
[0,50 — s — 1] then the product x h will follow the
same distribution as dual words in the previous case (the .
dotted line in Figure 1).

« If the support ofh is split among the two intervals, then
each bit of the product will be zero with probabilify(if
we assume that the codewords are mutually independeﬁ).

The weight ofG x / wil thus follow the same distribution = ~121YSIS |
as for random words. What appears from the study of these three cases is that

\{\{ords following the dashed line distribution of Figure 1 can
nly be found when theorrect lengthwas chosen. Ifr is

Figure 3. The matrixj when an incorrect length was chosen.

Once again, if the two distributions are distant enough,
will be possible to decide whgthe_r a (low weight) word is in thgnown, for a given word weighto, the two distributions are
dual of C or not. However, this will only work for words such . .

= . . . c known and it is thus possible to compute a threshldif
that the support of. is not split. In practice, this will decreaseWe can find a word: such that the weight of x % is below
the probability of finding words in the dual @. The larger g

so — s, the more this probability will decrease. If the Chose%’ then there is a high probability that the lengtfchosen is

synchronizations is close to the correct synchronizatieg, €qual ton. This also means that the offsefs probably not

the behavior of dual word finding algorithms will be nearl)%oo far from so. To find the exact value o, it is necessary
. ) o look at the supports of dual words found. As we have seen
the same as in the first case.

in I-B the correct offset cannot split the support of any words.
C. Incorrect length:n # ng We can thus proceed with some kind of dichotomy, but this
quires to find several dual words for each tested offset. In

In this third case, as it can be seen in Figure 3, each co r%— nd when th rrect svnchronization has been found
word will have a different offset. There is a high probabilit € end, © € correct syncnronization has been found,

that G is not close to any vector subspace. In practice, f e usually have found enough dual words to reconstruct the

any word h/, the productG x h’ will follow the binomial complete code.

distribution centered or%" represented by the plain line in We will now see two different algorithms to search for

Figure 1. The only case in which some words could follow \g/ords in the dual ofC. For each of these algorithms it is

different distribution, is ifn divides ny and each offset of a possible to estimate the number of tries needed to find one

dual wordh by n o,sitions is also in the dual o. If such word. It is thus possible to know that a length/synchronization

an unlikely e\yentpoccurs a divisor of. has howéver been pair is incorrect after a certain number of unsuccessful tries.
1 O

found, which makes findingy a much easier problem. Il. FINDING WORDS IN THEDUAL OF C
A. Exhaustive Search of Words of a Given Weight

The first thing to note when looking for words in the dual
of a code is that words of (very) low weight are easier to find.
First, the two distributions of Figure 1 are more distant from
one another, secondly, it can be easy to exhaustively test all
words of weightw. This is exactly what our first algorithm
does, using the Chose-Joux-Mitton algorithm [7].

The straightforward exhaustive search technique consists in
going through all words of weightv and for each of them,
computing the weight of their product wid. If one of these
Figure 1. Distribution of the weight of the produgtx . weights is below a threshold, then the corresponding word

Probability

>
S
dud >’

Product weight
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Table |

EXAMPLES OF PARAMETERS AND COMPLEXITIES OF THE see in Table IIl for LDPC codes, this estimate is very accurate
CHOSE-JOUX-MITTON ALGORITHM FOR SOME DUAL WORD WEIGHTS in practice.
7, | €3 | time | memory Computing the threshold@’. We need to select’ in order
6 | 2| 1| 00| Omn? to avoid all false alarms (that is, words not in the dualCof
180 g g 8%712; 8%; with a product byG below the threshold) and at the same time
23] 3]|0m| om miss as few as possible dual words. This will be possible if

the threshold can be chosen at more than 3 standard deviations
from the center of each distribution. M is large enough, this
will be possible.

fln order for the two “3 standard deviation” bounds to be in
t?le correct order we need:

likely belongs to the dual ofC. In order to improve this
technique, we can use a birthday technique. We build a list
all productsg x h» whereh is a word of weights and look )
for “near collisions”. These “near collisions” can be efficiently (3 1—(1-27)%w 4 1)

found by selecting a small window of siZgtypically ¢ = 32 (1—27)w @)

bits) on which we look for an exact match and then check if
the total weight of the product is beloW. If this inequality is verified, any threshol@ between the
The standard birthday technique finds such collisions w0 “3 standard deviations” bounds can be chosen and should
O(n*) operations and with memoi9(n % ). This can be im- 9give satisfactory results. In practice we choose to sefedt
proved using the Chose-Joux-Mitton algorithm which achievée exact middie of this interval which, as we will see in the
the exact same result in timé&(n%) but with memory last section, gives very good results. This corresponds to:
O(n!%1). The algorithm works as follow, with parameters M< o« _27),,,) 3\ﬁ

M
b+l =3 T=— 5 1 (m—l).

2
+ build the listU of all XORs of ¢, columns and sort it, B ysing the Canteaut-Chabaud Algorithm

» for all s € 0,2° —1] (with § = log, (f’z))' As we will see in Section lll, the previous algorithm can
— for all XORs z of £, columns, find all elements of 54y pe used for values af larger than 8. However, for
U matchingz & s on the S first positions of the ynst’codes, the minimal distance of their dual will be larger
window, _ than 8. In order to deal with these codes, we propose to use
— add the corresponding XORs 6f + £ columns 10 yhe aigorithm presented by Valembois [8], [14] and based on
alistCs, _ the Canteaut-Chabaud information set decoding algorithm [5].
— each collision inC is a possible dual word. The description we give of the algorithm matches the way we
The list Cs will have the same size a¥ in average, implemented it. Here is how this algorithm works:
giving us an algorithm with complexit@ (n‘>*™*(“-2)) and | select at random an “information set”, that is, lines
memoryO(n*!). among theM lines of G
« perform a Gaussian elimination on this information set,
swapping and xoringolumnsof G to obtain a new matrix
G’ (see Figure 4) and store the transition matfixsuch
that PG = G’
o choose a small window of lines among theM — n
remaining lines oG’
« use the same technique as in the previous algorithm to

Probability of success.This algorithm exhaustively searches
all dual words of weightw. So, if the sequence contains no
noise, the algorithm recovers all such dual words in a single
iteration. However, this algorithm finds x (i) times each

2

word of weightw. Thus, instead of using adl € [0, 2% —1], we
choose to use only a fraction of this interval so as to improve

the time complexity of the algorithm. The optimal fractigfa find all combinations ofp columns xoring to 0 on thé
to use depends am: the probability of finding each dual word lines of the window

Ly(w .
of weightw is 1 — (1 — 2%)2X(7)- Forw = 6, the optimal  , for each set of2p columns, verify that the xor on the

choice isA = 4 giving a probability of finding each word of columns ofG’ is of weight lower than a thresholfl
0.48 thus improving the overall time complexity by a factor , each wordh of weight2p can be converted to a word of
8. the dualh’ = h x P.

In the presence of noise, the probability of finding each dual This can be implemented very efficiently using the
word is simply the probability? of having a collision on the canteaut-Chabaud algorithm to select the information sets of
window of size/: successive iterations. In practice, this consists in only changing

14 (1—27)v ¢ one position in tr_\e pre_zvipus_iteration information set SO as to
P = <2> make the Gaussian elimination step less costly. Also, in order
to optimize the probabilities, it is better to split the columns

If we know the number of dual words of weight, we thus in two separate sets and look for collisions among words of
have an estimate of the number of dual words that one rounwdightp in each set. The optimal values for the two parameters
of the Chose-Joux-Mitton algorithm should return. As we will andp are chosen in the same way as in [4].
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However, what is known is that if we increadé¢ (and thus
also 7)), this probability of success will also increase. More

0 4 details about the choice g/ are given in the next section.
0%.
z [1l. PRACTICAL EXPERIMENTS
S
0 We have previously seen how to test a length and synchro-
1 nization and how to find words in the dual code ©f Our
M IE algorithms thus consist in testing all possible lengths and for

each length a number of different synchronizations. In practice,
for short codes, we test each lengthfrom 1 ton, andn/8
synchronizations each time (we test all synchronizations which
are a multiple of 8). For larger values of (especially for
LDPC codes), we test a fixed number of synchronizations
for each length (every; bits for instance). We divide our
experiments in two groups which behave very differently in
practice for both algorithms presented here.

dg-L > 1[Sm

Figure 4. Using the Canteaut-Chabaud algorithm on matrix

. . . . _A. Random Linear Codes
As for the previous algorithm, it would be interesting ) . )
to know the probability of success of one iteration of this VW€ first consider codes defined by a random generator

technique. A given word: of weightw in the dual ofC will matrix. For such codes, it appears that our first algorithm
be found if the producg x h is of weight: based on exhaustive search gives poor results. This algorithm

. . . . only works well for codes with very low weight words in
« 2p on the chosen information set (in 2 sets of weight " ; . .
. . their dual (weight 6 or 8 at most), which will only be the
« 0 on the window of siz€,

. and less tharT — 2p on the remaining positions. case for very short random codes (at mastx 40). Of

- - . S course, such codes are seldom used in practice. However,
For a given information set, the probability that the errors i o canteaut-Chabaud-based algorithm makes it possible to
G are well distributed for the previous conditions is:

find the length/synchronization of longer codes. Table Il gives

T—2p _ ~ results of simulations on random codes of different lengths
Peor = (55,)q* (1 — )" 2+ > (Mg (1= @M= with different noise levels. For these lengths, it is important to
i=0 note that the 10000 iterations are performed in approximately

1s. Thus, if the algorithm is able to find some words, it will

with ¢ = . Thanks to this probability, it is possible ; .
to compute an estimate (neglecting the dependencies betw@léﬁ be easy to find the length/synchronization of the code.

successive iterations) of the average number of iteratio\’i"spraaice’ for all the length/noise combinations of Table Il
required to find a given word. However, there are manynot containing a zero, the exact length/synchronization can be

words in the dual ofC and what interests us most is théecovered in a few minutes. Results given in [1] report similar

average number of iterations required to find any one of theg%rformances for small codes of rafe For the particular

words. Unfortunately, this number is much harder to compu.(l:(?se.of a(100,50) random code, increaging the numbt_ar_ of
as it will depend on the (unknown) distribution of the word erations of the Canteaut-Chabaud algorithm to a few millions

of the dual. For this reason. the threshdidwill be chosen about 10 minutes of computation) allows to deal with an error
independeﬁtly of this value. probability of 0.02 whereas the algorithm from [1] fails. For

We decide to choose the threshdldso as to minimize the the Io_nger_codes with rat(_as closer tp 1 pres_ented in [1], our
probability of having a false alarm (that is, a word not in th&echnlque Is successful with much higher noise levels.

1—(1—-27)"
2

dual verifying the weight conditions cited above). ThereXre Table II
possible false candidates, and for each of them the probability  NumBER oF wORDS FOUND BY10000ITERATIONS OF THE
Of Ver|fy|ng the We|ght Cond|t|ons is approx|mate|y: CANTEAUT-CHABAUD ALGORITHM ON RANDOM CODES OF RATEi.
HERE, M = 5n, co MEANS THAT TOO MANY WORDS WERE FOUND
T
1 )
Pralse = =17 Z *h. S—7] 0001 0002 | 0.006 | 001 | 002 | 005
2M o~ 32 | 14637 | 27081 | 42570 | 42913 | 19464 | 210
_ 64 00 00 oo | 1172189| 6310 | 0
If we want to avoid false alarms, we thus neBdise < 27". 128 ) ) 00 2992 0 0
This is achieved by choosing: 256 | oo o0 0 0 0 0
M _ [ nlos2 For lengths longer than 256, this technique can still be
2 2 successful but only ifr is very small or if particular codes

This choice makes sure that we avoid false alarms but givegh dual words of very low weight are used. This is for
us no hint about the probability of finding a word of the duakxample the case with LDPC codes. Compared to the results
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Table Il
NUMBER OF WORDS FOUND BY50 ITERATIONS OF THE
CHOSE-JOUX-MITTON ALGORITHM ON LDPC CODES OF RATE%,
LENGTH 1000AND WEIGHT 6. HERE, M = 512. THE FIFTH COLUMN
CORRESPONDS TO THE MINIMAL VALUE OFM GIVEN BY EQUATION (1).

several days to reconstruct an LDPC with noise level of
0.002 (assuming length and synchronization are already
known).

IV. CONCLUSION

7' ‘%‘L’J’rﬁ‘j Wofggicéf‘ijter ewxgﬁjcstﬁgjgga' m'rj‘v'jma' bg:ﬁ%rigfﬁ We were able to recover the length/synchronization of
001 478 a1 792 56 50 various linear block codes. For random codes, our algorithms
0.02| 251 7.5 266 70 70 were successful only for short lengths (up to 256) with very
g-gi i;‘ 01-;3 Ig 18180 g? low noise level (well below the correction capacity of the
005 6 0.08 3.9 140 117 code). Similar results were obtained by Valembois in the
0.06] 1 0.02 1.0 180 145 context of code reconstruction bringing us to the conclusion

that length/synchronization recovery is possible every time

code reconstruction is possible. This is mostly because re-
presented by Valembois in 2001 [14], we do not obtain ampnstruction is fast whenever it is possible.
notable improvement. This confirms the threshold effect welt is the first time that the Chose-Joux-Mitton algorithm
had noticed: eight years of computational power improvemerissapplied to the code reconstruction problem. It gives very
have very little influence on the noise-wise performances gbod results for LDPC codes. Our experiments on codes with
this algorithm. parity checks of weight 6 show that for length up to 10000

we can recover the length/synchronization of the code even
B. LDPC Codes for noise levels close to the correction capacity of the LDPC.

By nature, LDPC codes [11] have words of very lowror longer lengths, more than 3GB of memory are necessary.
weight in their dual. This makes it much easier to recovéor parity checks of weight 8, the time complexity increases
their length/synchronization. Also, our first algorithm wa$0 O(n*) and thus lengths beyond 2000 are impractical. To the
specifically designed for such codes. best of our knowledge, this is the first example of long LDPC
All our simulations were done on a computer with 3GB0de reconstruction in the presence of realistic noise levels.

of memory for LDPC codes with parity checks of weight 6Previous works by Barbier [1] could not deal with crossover
With our implementation, 3GB of memory were sufficient foprobabilities higher than 0.002. Exhaustive search approaches
lengths up to 10000 but not more. Table IlI gives the numbggally seem to be the best choice for LDPC reconstruction.
of words of the dual found in 50 iterations of the Chose-Joux-
Mitton algorithm on LDPC codes of length 1000 for different
noise levels. The optimal choice éfis not obvious but will cooperatif. These de doctoratcole Polytechnique, November 2007.
probably be around’ log, n. Here we chosé = 30. Note that  [2] J. Barbier, G. Sicot, and S. Houcke. Algebric approach of the recon-
one iteration takes approximately 3 seconds. One can thus see 2torggnggo(éf linear and convolutional error correcting codes.ClalS
that for noise levels of 5-6% a complete length/synchronizatiop) . gurel and R. Gautier. Blind estimation of encoder and interleaver
recovery will take very long (probably a few days on a single characteristics in a non cooperative contextlriternational Conference
computer). Table Il also shows some interesting results:

on Communications, Internet and Information Technology, C2003.
. . ) ) ) A. Canteaut. Attaques de cryptosyshesa mots de poids faible et
« for 7 <0.02, a single iteration of the algorithm is enough
to verify if a length/synchronization is correct. Thus, with [5]
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