
Recovering a Code’s Length and Synchronization
from a Noisy Intercepted Bitstream

Mathieu Cluzeau
INRIA

Matthieu Finiasz
ENSTA

Abstract—We focus on the problem of recovering the length
and synchronization of a linear block code from an intercepted
bitstream. We place ourselves in an operational context where the
intercepted bitstream contains a realistic noise level. We present
two algorithms, one due to Valembois and the other one brand
new. They are both useful in different contexts, able to verify if
a given length/synchronization is correct. Using them, we were
able to practically recover the synchronization of several codes.

INTRODUCTION

Most digital communications are both encoded and en-
crypted. For this reason, in order to be able to perform a
cryptanalysis, it is usually necessary to decode the intercepted
data. Most of the time, this data is encoded using a standard-
ized algorithm and it is thus assumed that the attacker can
decode as efficiently as the legitimate recipient. However, it
can happen that non-standard techniques are used. In this case,
the code reconstruction problem needs to be addressed. In
this article, we only focus on communications encoded using
linear block codes, thus reconstruction consists in recovering
a generator/parity check matrix of the code. The first step of
this reconstruction consists in recovering the code’s length and
synchronization. Most other articles dealing with code recon-
struction [6], [8], [9], [14] consider this information known
and only deal with the problem of finding a parity check
matrix from noisy codewords. It appears that the most efficient
techniques to recover the code’s length/synchronization can
also be used to reconstruct the code.

This article is composed of three main sections. First, we
show that looking for words in the dual code is sufficient to
decide if a specific length/synchronization is correct. Then, in
the second part, we present two very different techniques for
searching words in the dual code. Eventually, we present some
experimental results and give estimates for the maximum noise
level allowing to recover a code’s length and synchronization.

Previous works. This article is not the first to deal with
the problem of finding the length/synchronization of a linear
block code bitstream. For instance, a technique based on rank
computation is presented in [1], [2]. This technique consists in
computing, for all possible lengths and synchronizations, the
rank of the matrix formed with the noisy codewords. If the
noise level is low enough and the length and synchronization
are correct, this matrix will not be of full rank. Finding the
correct length/synchronization then simply consists in finding
the minimum of these ranks. When the level of noise starts
to increase, it is necessary to compute the rank of sub-
matrices and hope to find “low noise zones”. We compare our
experimental results with those taken from [1] in Section III.

Another approach to this problem consists in using in-
formation set decoding techniques. The first to propose this
idea was Planquette [12] but with very limited applications to
block code reconstruction. Valembois later rediscovered this
technique and applied it efficiently to the reconstruction of
small block codes. The technique we present in Section II-B
is directly inspired from his work but applied to the problem
of finding the length/synchronization of a code.

I. DECIDING WHETHER A GIVEN LENGTH AND

SYNCHRONIZATION IS CORRECT

In this section, we consider that the received bit-
stream was transmitted through a binary symmetric channel
with cross-over probabilityτ . When trying to recover the
length/synchronization of a codeC, the first step is to be able
to decide whether a given length/synchronization is correct
or not. One must thus split the input bitstream into words of
the given length, starting at the given synchronization, and
then decide if the words obtained are indeed noisy codewords
(that is, elements of a vector space with a small amount of
noise). Of course, as the target vector space (the codeC we are
looking for) is unknown, this problem is hard. A simpler way
to look at it is to consider the dual problem: instead of looking
for a vector space directly, we can look for elements of its
orthogonal (these are, words of the dual ofC). Such orthogonal
words have a probability higher than12 to be orthogonal to a
noisy codeword (if the noise level is lower than12 of course).
In order to decide if a length/synchronization is correct, one
can thus look for dual words: as we will see, if such a word
can be found then the length is correct (with a probability
close to one) and the synchronization is probably not far from
correct.

Suppose the correct length/synchronization is(n0, s0) and
the length/synchronization we are testing is(n, s). After
splitting the input bitstream into words of lengthn, we build
a matrix G such that each line ofG is a word. This matrix
is of sizeM × n whereM = b `−s

n c if ` is the length of the
intercepted bitstream. Looking for a word of the dual consists
in finding a wordh of length n such thatG × h is of low
weight. We distinguish three different cases.

A. Correct length/synchronization:n = n0, s = s0

In this case, each line ofG is a noisy codeword. Thus, if
h is a word of the dual ofC of weight w the weight of the
productG × h strongly depends onτ and follows a binomial
distribution, centered inM2

(
1 − (1 − 2τ)w

)
, with a variance

of σ2 = M
4

(
1 − (1 − 2τ)2w

)
. This distribution is depicted



in Figure 1 (dashed line). However, ifh′ is not a word of
the dual ofC, whatever its weight, the weight of the product
G ×h′ will follow a binomial distribution centered inM2 with
a varianceM

4 (plain line in Figure 1).
If these two distributions have a small enough intersection,

then it is possible to tell, with high probability, whether a word
h is in the dual ofC or not.

B. Correct length, incorrect synchronization:n = n0, s 6= s0

In this case, each line ofG is composed of two different
codewords: the firsts0 − s mod n bits belong to one word,
the remaining bits to the next one (see Figure 2). We take a
word h in the dual ofC and cyclicly shift it (to the right) by
s0 − s positions to obtain a word̄h.

• If the support of h̄ is included in [s0 − s, n − 1] or
[0, s0 − s − 1] then the productG × h̄ will follow the
same distribution as dual words in the previous case (the
dotted line in Figure 1).

• If the support of̄h is split among the two intervals, then
each bit of the product will be zero with probability12 (if
we assume that the codewords are mutually independent).
The weight ofG×h̄ will thus follow the same distribution
as for random words.

Once again, if the two distributions are distant enough, it
will be possible to decide whether a (low weight) word is in the
dual ofC or not. However, this will only work for words such
that the support of̄h is not split. In practice, this will decrease
the probability of finding words in the dual ofC. The larger
s0 − s, the more this probability will decrease. If the chosen
synchronizations is close to the correct synchronizations0,
the behavior of dual word finding algorithms will be nearly
the same as in the first case.

C. Incorrect length:n 6= n0

In this third case, as it can be seen in Figure 3, each code-
word will have a different offset. There is a high probability
that G is not close to any vector subspace. In practice, for
any word h′, the productG × h′ will follow the binomial
distribution centered onM2 represented by the plain line in
Figure 1. The only case in which some words could follow a
different distribution, is ifn divides n0 and each offset of a
dual wordh by n positions is also in the dual ofC. If such
an unlikely event occurs, a divisor ofn0 has however been
found, which makes findingn0 a much easier problem.

Product weight

P
ro

b
ab

il
it
y

r
d

an
om

w
ord

dual wor
d

1 − (1 − 2¿)w

2
M

M

2

Figure 1. Distribution of the weight of the productG × h.

n

M

s s0-

Figure 2. The matrixG when an incorrect synchronization was chosen.

n

M

s s0-

Figure 3. The matrixG when an incorrect length was chosen.

D. Analysis

What appears from the study of these three cases is that
words following the dashed line distribution of Figure 1 can
only be found when thecorrect lengthwas chosen. Ifτ is
known, for a given word weightw, the two distributions are
known and it is thus possible to compute a thresholdT . If
we can find a wordh such that the weight ofG × h is below
T , then there is a high probability that the lengthn chosen is
equal ton0. This also means that the offsets is probably not
too far froms0. To find the exact value ofs0, it is necessary
to look at the supports of dual words found. As we have seen
in I-B the correct offset cannot split the support of any words.
We can thus proceed with some kind of dichotomy, but this
requires to find several dual words for each tested offset. In
the end, when the correct synchronization has been found,
we usually have found enough dual words to reconstruct the
complete codeC.

We will now see two different algorithms to search for
words in the dual ofC. For each of these algorithms it is
possible to estimate the number of tries needed to find one
word. It is thus possible to know that a length/synchronization
pair is incorrect after a certain number of unsuccessful tries.

II. F INDING WORDS IN THEDUAL OF C

A. Exhaustive Search of Words of a Given Weight

The first thing to note when looking for words in the dual
of a code is that words of (very) low weight are easier to find.
First, the two distributions of Figure 1 are more distant from
one another, secondly, it can be easy to exhaustively test all
words of weightw. This is exactly what our first algorithm
does, using the Chose-Joux-Mitton algorithm [7].

The straightforward exhaustive search technique consists in
going through all words of weightw and for each of them,
computing the weight of their product withG. If one of these
weights is below a thresholdT , then the corresponding word



Table I
EXAMPLES OF PARAMETERS AND COMPLEXITIES OF THE

CHOSE-JOUX-M ITTON ALGORITHM FOR SOME DUAL WORD WEIGHTS.

w `1 `2 time memory

6 2 1 O(n3) O(n2)
8 2 2 O(n4) O(n2)
10 3 2 O(n5) O(n3)
12 3 3 O(n6) O(n3)

likely belongs to the dual ofC. In order to improve this
technique, we can use a birthday technique. We build a list of
all productsG×hw

2
wherehw

2
is a word of weightw2 and look

for “near collisions”. These “near collisions” can be efficiently
found by selecting a small window of size` (typically ` = 32
bits) on which we look for an exact match and then check if
the total weight of the product is belowT .

The standard birthday technique finds such collisions in
O(n

w
2 ) operations and with memoryO(n

w
2 ). This can be im-

proved using the Chose-Joux-Mitton algorithm which achieves
the exact same result in timeO(n

w
2 ) but with memory

O(nd
w
4 e). The algorithm works as follow, with parameters

`1 + `2 = w
2 :

• build the listU of all XORs of `1 columns and sort it,
• for all s ∈ [0, 2S − 1] (with S = log2

(
n
`2

)
):

– for all XORs x of `2 columns, find all elements of
U matchingx ⊕ s on the S first positions of the
window,

– add the corresponding XORs of`1 + `2 columns to
a list Cs,

– each collision inCs is a possible dual word.

The list Cs will have the same size asU in average,
giving us an algorithm with complexityO(n`2+max(`1,`2)) and
memoryO(n`1).

Probability of success.This algorithm exhaustively searches
all dual words of weightw. So, if the sequence contains no
noise, the algorithm recovers all such dual words in a single
iteration. However, this algorithm finds12 ×

(
w
w
2

)
times each

word of weightw. Thus, instead of using alls ∈ [0, 2S−1], we
choose to use only a fraction of this interval so as to improve
the time complexity of the algorithm. The optimal fraction1

2λ

to use depends onw: the probability of finding each dual word

of weight w is 1 − (1 − 1
2λ )

1
2×(w

w
2
). For w = 6, the optimal

choice isλ = 4 giving a probability of finding each word of
0.48 thus improving the overall time complexity by a factor
8.

In the presence of noise, the probability of finding each dual
word is simply the probabilityP of having a collision on the
window of size`:

P =
(

1 + (1− 2τ)w

2

)`

.

If we know the number of dual words of weightw, we thus
have an estimate of the number of dual words that one round
of the Chose-Joux-Mitton algorithm should return. As we will

see in Table III for LDPC codes, this estimate is very accurate
in practice.

Computing the thresholdT . We need to selectT in order
to avoid all false alarms (that is, words not in the dual ofC

with a product byG below the threshold) and at the same time
miss as few as possible dual words. This will be possible if
the threshold can be chosen at more than 3 standard deviations
from the center of each distribution. IfM is large enough, this
will be possible.

In order for the two “3 standard deviation” bounds to be in
the correct order we need:

M >

(
3
√

1− (1− 2τ)2w + 1
(1− 2τ)w

)2

. (1)

If this inequality is verified, any thresholdT between the
two “3 standard deviations” bounds can be chosen and should
give satisfactory results. In practice we choose to selectT in
the exact middle of this interval which, as we will see in the
last section, gives very good results. This corresponds to:

T =
M

2

(
1− (1− 2τ)w

2

)
+ 3

√
M

4
(√

1− (1− 2τ)2w − 1
)
.

B. Using the Canteaut-Chabaud Algorithm

As we will see in Section III, the previous algorithm can
hardly be used for values ofw larger than 8. However, for
most codes, the minimal distance of their dual will be larger
than 8. In order to deal with these codes, we propose to use
the algorithm presented by Valembois [8], [14] and based on
the Canteaut-Chabaud information set decoding algorithm [5].
The description we give of the algorithm matches the way we
implemented it. Here is how this algorithm works:
• select at random an “information set”, that is,n lines

among theM lines of G
• perform a Gaussian elimination on this information set,

swapping and xoringcolumnsof G to obtain a new matrix
G′ (see Figure 4) and store the transition matrixP such
that PG = G′

• choose a small window ofl lines among theM − n
remaining lines ofG′

• use the same technique as in the previous algorithm to
find all combinations of2p columns xoring to 0 on thel
lines of the window

• for each set of2p columns, verify that the xor on the
columns ofG′ is of weight lower than a thresholdT

• each wordh of weight 2p can be converted to a word of
the dualh′ = h× P .

This can be implemented very efficiently using the
Canteaut-Chabaud algorithm to select the information sets of
successive iterations. In practice, this consists in only changing
one position in the previous iteration information set so as to
make the Gaussian elimination step less costly. Also, in order
to optimize the probabilities, it is better to split the columns
in two separate sets and look for collisions among words of
weightp in each set. The optimal values for the two parameters
l andp are chosen in the same way as in [4].



n

M
l

1

1

0

0 w
eig

h
t 2

p
0

w
eig

h
t

-2
<

T
p

Figure 4. Using the Canteaut-Chabaud algorithm on matrixG.

As for the previous algorithm, it would be interesting
to know the probability of success of one iteration of this
technique. A given wordh of weight w in the dual ofC will
be found if the productG × h is of weight:
• 2p on the chosen information set (in 2 sets of weightp),
• 0 on the window of sizel,
• and less thanT − 2p on the remaining positions.

For a given information set, the probability that the errors in
G are well distributed for the previous conditions is:

Pcor =
(

n
2p

)
q2p(1−q)n−2p+l

T−2p∑

i=0

(
M−n−l

i

)
qi(1−q)M−n−l−i

with q = 1−(1−2τ)w

2 . Thanks to this probability, it is possible
to compute an estimate (neglecting the dependencies between
successive iterations) of the average number of iterations
required to find a given wordh. However, there are many
words in the dual ofC and what interests us most is the
average number of iterations required to find any one of these
words. Unfortunately, this number is much harder to compute
as it will depend on the (unknown) distribution of the words
of the dual. For this reason, the thresholdT will be chosen
independently of this value.

We decide to choose the thresholdT so as to minimize the
probability of having a false alarm (that is, a word not in the
dual verifying the weight conditions cited above). There are2n

possible false candidates, and for each of them the probability
of verifying the weight conditions is approximately:

Pfalse =
1

2M

T∑

i=0

(
M
i

)
.

If we want to avoid false alarms, we thus needPfalse < 2−n.
This is achieved by choosing:

T =
M

2
−

√
M

n log 2
2

.

This choice makes sure that we avoid false alarms but gives
us no hint about the probability of finding a word of the dual.

However, what is known is that if we increaseM (and thus
also T ), this probability of success will also increase. More
details about the choice ofM are given in the next section.

III. PRACTICAL EXPERIMENTS

We have previously seen how to test a length and synchro-
nization and how to find words in the dual code ofC. Our
algorithms thus consist in testing all possible lengths and for
each length a number of different synchronizations. In practice,
for short codes, we test each lengthn from 1 to n0 andn/8
synchronizations each time (we test all synchronizations which
are a multiple of 8). For larger values ofn (especially for
LDPC codes), we test a fixed number of synchronizations
for each length (everyn8 bits for instance). We divide our
experiments in two groups which behave very differently in
practice for both algorithms presented here.

A. Random Linear Codes

We first consider codes defined by a random generator
matrix. For such codes, it appears that our first algorithm
based on exhaustive search gives poor results. This algorithm
only works well for codes with very low weight words in
their dual (weight 6 or 8 at most), which will only be the
case for very short random codes (at mostn ≈ 40). Of
course, such codes are seldom used in practice. However,
the Canteaut-Chabaud-based algorithm makes it possible to
find the length/synchronization of longer codes. Table II gives
results of simulations on random codes of different lengths
with different noise levels. For these lengths, it is important to
note that the 10000 iterations are performed in approximately
1s. Thus, if the algorithm is able to find some words, it will
also be easy to find the length/synchronization of the code.
In practice, for all the length/noise combinations of Table II
not containing a zero, the exact length/synchronization can be
recovered in a few minutes. Results given in [1] report similar
performances for small codes of rate12 . For the particular
case of a(100, 50) random code, increasing the number of
iterations of the Canteaut-Chabaud algorithm to a few millions
(about 10 minutes of computation) allows to deal with an error
probability of 0.02 whereas the algorithm from [1] fails. For
the longer codes with rates closer to 1 presented in [1], our
technique is successful with much higher noise levels.

Table II
NUMBER OF WORDS FOUND BY10000ITERATIONS OF THE

CANTEAUT-CHABAUD ALGORITHM ON RANDOM CODES OF RATE 1
2

.
HERE, M = 5n,∞ MEANS THAT TOO MANY WORDS WERE FOUND.

PPPn τ 0.001 0.002 0.005 0.01 0.02 0.05
32 14637 27081 42570 42913 19464 210
64 ∞ ∞ ∞ 1172189 6310 0
128 ∞ ∞ ∞ 2992 0 0
256 ∞ ∞ 0 0 0 0

For lengths longer than 256, this technique can still be
successful but only ifτ is very small or if particular codes
with dual words of very low weight are used. This is for
example the case with LDPC codes. Compared to the results



Table III
NUMBER OF WORDS FOUND BY50 ITERATIONS OF THE

CHOSE-JOUX-M ITTON ALGORITHM ON LDPC CODES OF RATE1
2

,
LENGTH 1000AND WEIGHT 6. HERE, M = 512. THE FIFTH COLUMN

CORRESPONDS TO THE MINIMAL VALUE OFM GIVEN BY EQUATION (1).

τ words
found

expected
words per iter.

expected total
words found

minimal
M

theoretical
bound forM

0.01 478 41 492 56 60
0.02 251 7.5 266 70 70
0.03 84 1.5 70 88 82
0.04 15 0.33 16 110 97
0.05 6 0.08 3.9 140 117
0.06 1 0.02 1.0 180 145

presented by Valembois in 2001 [14], we do not obtain any
notable improvement. This confirms the threshold effect we
had noticed: eight years of computational power improvements
have very little influence on the noise-wise performances of
this algorithm.

B. LDPC Codes

By nature, LDPC codes [11] have words of very low
weight in their dual. This makes it much easier to recover
their length/synchronization. Also, our first algorithm was
specifically designed for such codes.

All our simulations were done on a computer with 3GB
of memory for LDPC codes with parity checks of weight 6.
With our implementation, 3GB of memory were sufficient for
lengths up to 10 000 but not more. Table III gives the number
of words of the dual found in 50 iterations of the Chose-Joux-
Mitton algorithm on LDPC codes of length 1000 for different
noise levels. The optimal choice of` is not obvious but will
probably be aroundw2 log2 n. Here we chosè = 30. Note that
one iteration takes approximately 3 seconds. One can thus see
that for noise levels of 5-6% a complete length/synchronization
recovery will take very long (probably a few days on a single
computer). Table III also shows some interesting results:

• for τ ≤ 0.02, a single iteration of the algorithm is enough
to verify if a length/synchronization is correct. Thus, with
such noise levels, recovering the length/synchronization
of the code takes a few hours. Moreover, this only
requires very few intercepted words.

• for noise levels close to the correction capacity of the
LDPC (τ = 0.06 for instance) it is still possible to verify
a length/synchronization pair. This was not obvious at
first sight for such noise levels.

• in [10], Cluzeau and Tillich take an information theoretic
approach to the problem of code reconstruction. They
give a theoretical and asymptotic bound on the number
of noisy codewords required to reconstruct an LDPC
code which is reported in the last column of Table III. It
appears that the minimal number of words required for
our algorithm is quite close to this bound.

• as compared to the results of Barbieret al. [1], [2],
our technique can handle significantly higher noise levels
while also being much faster. For instance, with param-
eters similar to those of Table III, their algorithm takes

several days to reconstruct an LDPC with noise level of
0.002 (assuming length and synchronization are already
known).

IV. CONCLUSION

We were able to recover the length/synchronization of
various linear block codes. For random codes, our algorithms
were successful only for short lengths (up to 256) with very
low noise level (well below the correction capacity of the
code). Similar results were obtained by Valembois in the
context of code reconstruction bringing us to the conclusion
that length/synchronization recovery is possible every time
code reconstruction is possible. This is mostly because re-
construction is fast whenever it is possible.

It is the first time that the Chose-Joux-Mitton algorithm
is applied to the code reconstruction problem. It gives very
good results for LDPC codes. Our experiments on codes with
parity checks of weight 6 show that for length up to 10000
we can recover the length/synchronization of the code even
for noise levels close to the correction capacity of the LDPC.
For longer lengths, more than 3GB of memory are necessary.
For parity checks of weight 8, the time complexity increases
to O(n4) and thus lengths beyond 2000 are impractical. To the
best of our knowledge, this is the first example of long LDPC
code reconstruction in the presence of realistic noise levels.
Previous works by Barbier [1] could not deal with crossover
probabilities higher than 0.002. Exhaustive search approaches
really seem to be the best choice for LDPC reconstruction.

REFERENCES

[1] J. Barbier.Analyse de canaux de communication dans un contexte non
cooṕeratif. Thèse de doctorat,́Ecole Polytechnique, November 2007.

[2] J. Barbier, G. Sicot, and S. Houcke. Algebric approach of the recon-
struction of linear and convolutional error correcting codes. InCCIS
2006, 2006.

[3] G. Burel and R. Gautier. Blind estimation of encoder and interleaver
characteristics in a non cooperative context. InInternational Conference
on Communications, Internet and Information Technology, CIIT, 2003.

[4] A. Canteaut. Attaques de cryptosystèmesà mots de poids faible et
construction de fonctions t-résilientes. PhD thesis, Paris 6, 1996.

[5] A. Canteaut and F. Chabaud. A new algorithm for finding minimum-
weight words in a linear code: application to primitive narrow-sense
BCH codes of length 511.IEEE Transaction on Information Theory,
44(1):367–378, January 1998.

[6] C. Chabot. Recognition of a code in a noisy environment. InIEEE
Conference, ISIT’07, pages 2210–2215, 2007.

[7] P. Chose, A. Joux, and M. Mitton. Fast correlation attacks: an
algorithmic point of view. In L.R. Knudsen, editor,Eurocrypt 2002,
volume 2332 ofLecture Notes in Computer Science, pages 209–221.
Springer, 2002.

[8] M. Cluzeau. Block code reconstruction using iterative decoding tech-
niques. InIEEE Conference, ISIT’06, pages 2269–2273, Seattle, USA,
2006. IEEE Press.

[9] M. Cluzeau.Reconnaissance d’un schéma de codage. PhD thesis,́Ecole
Polytechnique, 2006.

[10] M. Cluzeau and J.P. Tillich. On the code reverse engineering problem.
In IEEE Conference, ISIT’08, pages 634–638, Toronto, Canada, 2008.
IEEE Press.

[11] R. G. Gallager.Low Density Parity Check Codes. MIT Press, 1963.
[12] Guillaume Planquette.Identification de trains binaires codés. Phd thesis,

Universit́e de Rennes I, December 1996.
[13] G. Sicot and S. Houcke. Blind detection of interleaver parameters. In

ICCASP05, 2005.
[14] A. Valembois. Detection and recognition of a binary linear code.

Discrete Applied Mathematics, 111(1-2):199–218, July 2001.


