Private Stream Search at Almost the Same Communication Cost as a Regular Search

Matthieu Finiasz and Kannan Ramchandran

Private Stream SearchWhat is it?

- **X** A stream search consists in filtering data according to a set of keywords:
 - the data is a stream (it could also be a database)
 - every piece of data is treated independently
 - the filtering is done externally
 - → you retrieve only the matching data.
- **×** A typical scenario is Google Alerts:
 - get an alert for each new page matching your interests.
- ★ Private Stream Search does this without revealing the keywords (your interests) to the filtering server.

Private Stream Search Why is it useful?

- **×** Protect your privacy:
- **×** Protect your financial interests:
 - when searching for patents,
 - → reveals what your company is focusing on.
- **×** Global surveillance systems:
 - ≈ search for keywords in emails.
- **×** But PSS is only worth it if it is efficient:
 - ≈ no one is ready to lose efficiency for privacy...

Private Stream Search How can it work?

- ★ To preserve privacy, the user sends a masked query:
 - ≈ a public list of possible keywords is needed,
 - * the query is an encrypted selection of keywords.
- ★ The server filters according to the encrypted query:
 - all documents/all keywords are treated symmetrically,
 - x it accumulates matches in an encrypted data buffer,
- × PSS requires computations on encrypted data:
 - x possible using (simple) homomorphic encryption,
 - → here we use Paillier's cryptosystem.

The First PSS Scheme [Ostrovsky-Skeith 2005]

- **×** Requirements for this scheme:
 - lpha a public dictionary of keywords $\Omega = \{k_1,...,k_{|\Omega|}\}$,
 - \times the users asks OR queries on words of Ω ,
 - st a database/stream of t documents $(f_1,...,f_t)$,
 - \times the users has an estimate of the number m of matches.
- ★ We consider an example with:

 $\Omega=\deg$ brown cat black bird white $f_1=$ "the dog is black" $f_3=$ "the bird is white" $f_2=$ "the cat is white" $f_4=$ "the bird is black"

The First PSS Scheme Query Construction

USER

- ★ The user wants to query "cat OR white",
 - st he computes a tuple Q of $\mathcal{E}(0)$ and $\mathcal{E}(1)$ accordingly.

 $\Omega = \log$ brown cat black bird white

$$Q = \mathcal{E}(0) \quad \mathcal{E}(0) \quad \mathcal{E}(1) \quad \mathcal{E}(0) \quad \mathcal{E}(0) \quad \mathcal{E}(1)$$

SERVER

- \times The server prepares a response buffer B,
 - \times the matches will be accumulated in B.

$$\Omega = \log$$
 brown cat black bird white

$$Q = \underbrace{\mathcal{E}(0)}_{} \ \mathcal{E}(0) \ \mathcal{E}(1) \ \underbrace{\mathcal{E}(0)}_{} \ \mathcal{E}(0) \ \mathcal{E}(1)$$

$$f_1$$
 = "the \log is black " $\mathcal{E}(0+0)$

 \times For every document f_i , the server computes:

$$\mathcal{E}(c_i) = \prod_{k_j \in f_i} q_j$$
.

 \rightarrow c_i is the number of matching keywords in f_i .

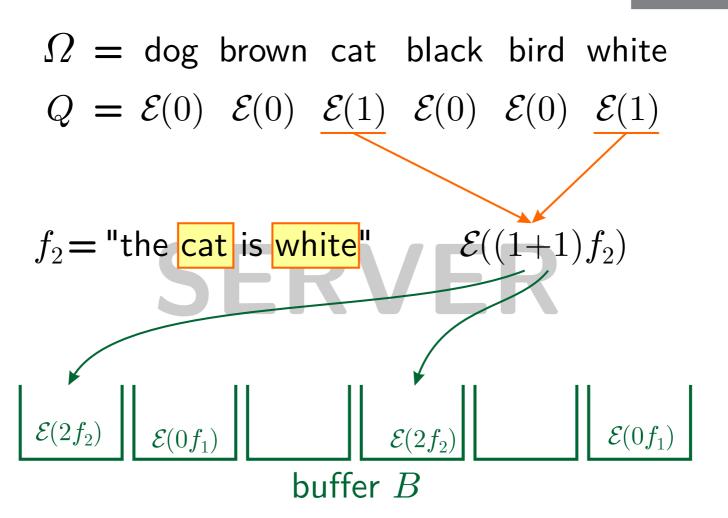
$$\Omega = \operatorname{dog} \ \operatorname{brown} \ \operatorname{cat} \ \operatorname{black} \ \operatorname{bird} \ \operatorname{white}$$

$$Q = \underline{\mathcal{E}(0)} \ \mathcal{E}(0) \ \mathcal{E}(1) \ \underline{\mathcal{E}(0)} \ \mathcal{E}(0) \ \mathcal{E}(1)$$

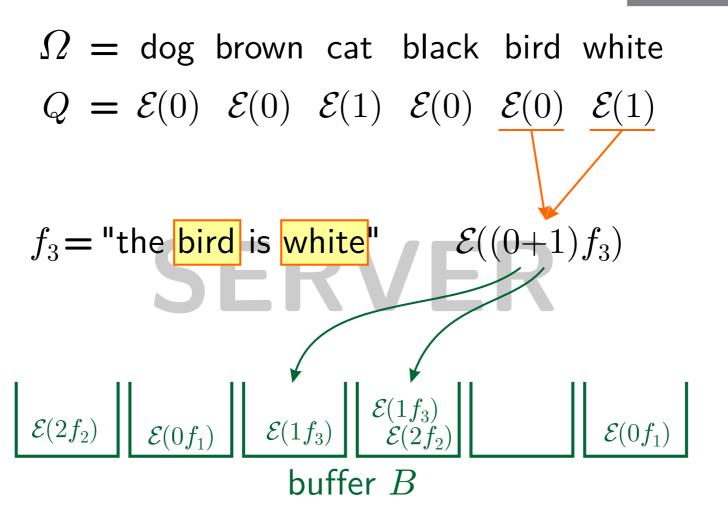
$$f_1 = \text{"the dog is black"} \ \mathcal{E}((0+0)f_1)$$

$$\mathcal{E}(0f_1) \ \operatorname{buffer} \ B$$

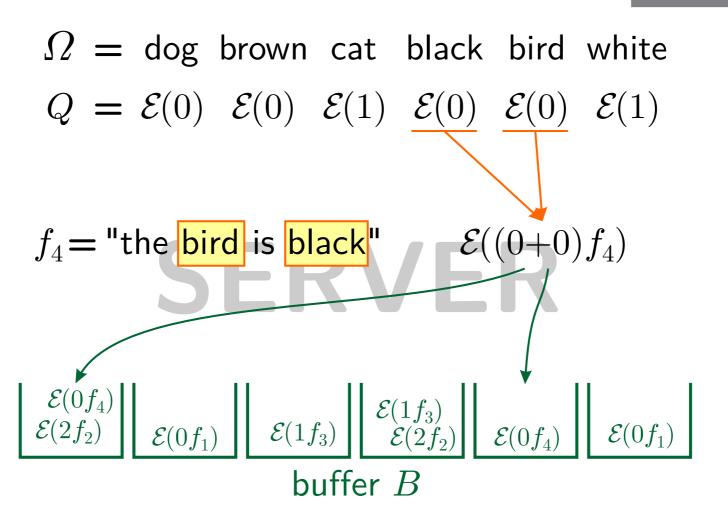
- \star For every document f_i :
 - st the server "adds" $\mathcal{E}(c_i)^{f_i} = \mathcal{E}(c_i f_i)$ randomly in B.



× The server repeats this for all documents.



× The server repeats this for all documents.



× The server repeats this for all documents.

The First PSS Scheme Extraction of Results

 $\Omega = \log$ brown cat black bird white

$$Q = \mathcal{E}(0) \quad \mathcal{E}(0) \quad \mathcal{E}(1) \quad \mathcal{E}(0) \quad \mathcal{E}(0) \quad \mathcal{E}(1)$$

USER

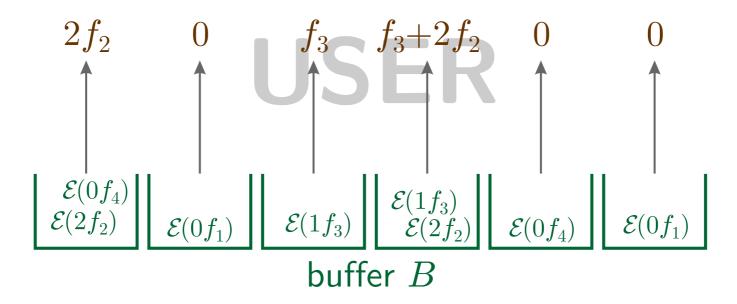
$$\begin{array}{|c|c|c|c|c|c|} \mathcal{E}(0f_4) \\ \mathcal{E}(2f_2) \end{array} \begin{array}{|c|c|c|c|} \mathcal{E}(0f_1) \end{array} \begin{array}{|c|c|c|c|} \mathcal{E}(1f_3) \\ \mathcal{E}(2f_2) \end{array} \begin{array}{|c|c|c|c|} \mathcal{E}(0f_4) \end{array} \begin{array}{|c|c|c|c|} \mathcal{E}(0f_4) \end{array} \begin{array}{|c|c|c|c|} \mathcal{E}(0f_1) \end{array}$$

 \times The user receives the encrypted buffer B.

The First PSS Scheme Extraction of Results

 $\Omega = \log \text{ brown cat black bird white}$

$$Q = \mathcal{E}(0) \quad \mathcal{E}(0) \quad \mathcal{E}(1) \quad \mathcal{E}(0) \quad \mathcal{E}(0) \quad \mathcal{E}(1)$$

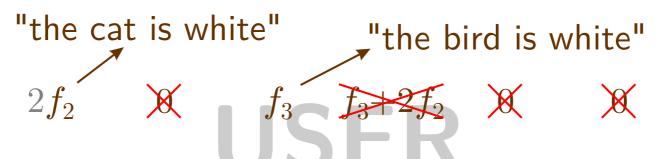


- \times The user receives the encrypted buffer B,
 - ⋈ he decrypts it.

The First PSS Scheme Extraction of Results

$$\Omega = \text{dog brown cat black bird white}$$

$$Q = \mathcal{E}(0) \quad \mathcal{E}(0) \quad \mathcal{E}(1) \quad \mathcal{E}(0) \quad \mathcal{E}(0) \quad \mathcal{E}(1)$$



$$\begin{array}{|c|c|c|c|c|} \mathcal{E}(0f_4) \\ \mathcal{E}(2f_2) \end{array} \begin{array}{|c|c|c|c|} \mathcal{E}(0f_1) \end{array} \begin{array}{|c|c|c|c|} \mathcal{E}(1f_3) \\ \mathcal{E}(2f_2) \end{array} \begin{array}{|c|c|c|c|} \mathcal{E}(0f_4) \end{array} \begin{array}{|c|c|c|c|} \mathcal{E}(0f_4) \end{array} \end{array} \begin{array}{|c|c|c|c|} \mathcal{E}(0f_1) \end{array}$$

- \times The user receives the encrypted buffer B,
 - ⋈ he gets one document for each singleton.

What can be improved in this scheme?

× Computations:

- × PSS requires one operation for each message,
- - → requires more efficient homomorphic encryption.

× Communications:

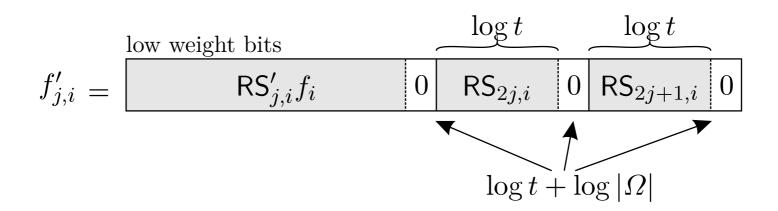
- the query is linear in the dictionary size,
 - → fully homomorphic encryption could help,
- the reply is linear in the buffer size,
 - → the buffer size should be the number of matches.
- \star In the Ostrovsky-Skeith scheme, the size is $O(m \log m)$,
 - Bethencourt et al. and Danezis-Díaz improve this.

Our Contribution

- **×** Take an information theory look at the problem:
 - pprox the server computes $\mathcal{E}(c_if_i)$ an encrypted sparse vector \rightarrow the problem is to compress it,
 - - → compatible with homomorphic encryption.
- ★ We propose two different approaches:
 - - \rightarrow allows a "zero-error" guarantee (if m is known).
 - Using irregular LDPC codes,
 - gives optimal asymptotic performances.

Using Reed-Solomon Codes

- **×** The straightforward solution uses:
 - st a buffer B of size 2m for m matching documents,
 - pprox each $\mathcal{E}(c_if_i)$ is multiplied by a Reed-Solomon parity check matrix column and added to B.
- ★ The code length (database size) is much smaller than the error space (symbol size),
 - possible to combine erasure and error correction.



Using Reed-Solomon Codes

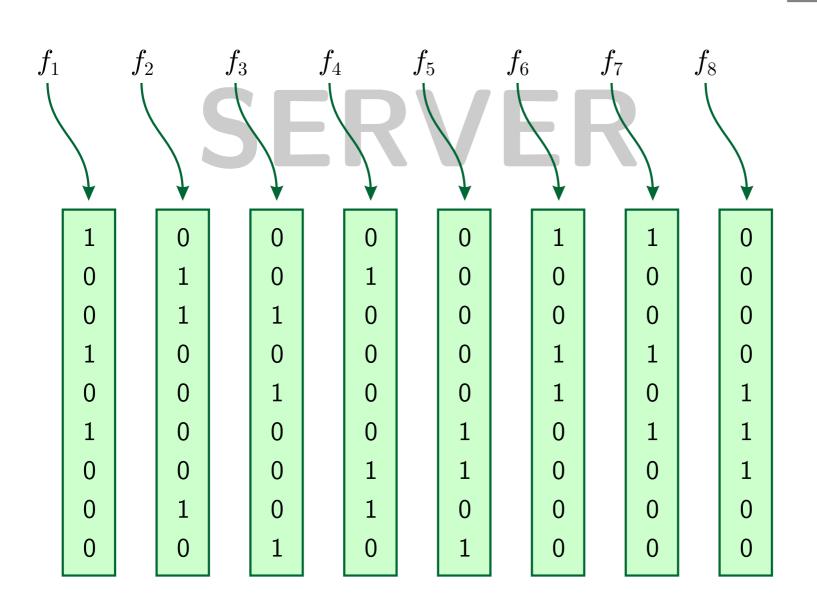
- **×** This solution gives:
 - \times a buffer of size m,
 - → with some loss in each symbol,
 - × a zero-error guarantee,
 - → if the number of matches is known in advance.
- ★ It has two main drawbacks:
 - x it is computationally (very) heavy on the server side,
 - \rightarrow each document requires m exponentiations,
 - * the reply size still depends on the database size,
 - → we get the documents and their position.

Using LDPC codes

- **×** To obtain an optimal reply size:
 - * the user should only get the documents,

- **×** Each document defines its own parity check column:
 - x use the document as a seed to a PRNG,
 - × use the PRNG to generate a "random" LDPC column.

⚠ This can't be done in a standard communication,→ we define the code from the values of the error.



× Use a PRNG to generate LDPC columns.

$$Q = \mathcal{E}(0) \quad \mathcal{E}(0) \quad \mathcal{E}(1) \quad \mathcal{E}(0) \quad \mathcal{E}(0) \quad \mathcal{E}(1)$$

$$\mathcal{E}(0f_1)$$
 $\mathcal{E}(1f_2)$ $\mathcal{E}(1f_3)$ $\mathcal{E}(0f_4)$ $\mathcal{E}(1f_5)$ $\mathcal{E}(0f_6)$ $\mathcal{E}(0f_7)$ $\mathcal{E}(1f_8)$

1	0	0	0	0	1	1	0
0	1	0	1	0	0	0	0
0	1	1	0	0	0	0	0
1	0	0	0	0	1	1	0
0	0	1	0	0	1	0	1
1	0	0	0	1	0	1	1
0	0	0	1	1	0	0	1
0	1	0	1	0	0	0	0
0	0	1	0	1	0	0	0

 \times Compute the encrypted sparse vector $\mathcal{E}(c_i f_i)$ as before.

$$Q = \mathcal{E}(0) \quad \mathcal{E}(0) \quad \mathcal{E}(1) \quad \mathcal{E}(0) \quad \mathcal{E}(0) \quad \mathcal{E}(1)$$

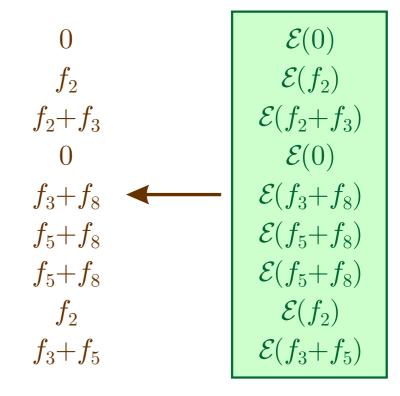
$$\mathcal{E}(0f_1)$$
 $\mathcal{E}(1f_2)$ $\mathcal{E}(1f_3)$ $\mathcal{E}(0f_4)$ \times $\mathcal{E}(1f_5)$ $\mathcal{E}(0f_6)$ $\mathcal{E}(0f_7)$ $\mathcal{E}(1f_8)$

1	0	0	0	0	1	1	0
0	1	0		0			0
0	1	1		0			0
1	0	0		0			0
0	0	1		0			1
1	0	0		1			1
0	0	0		1			1
0	1	0		0			0
0	0	1	0	1	0	0	0

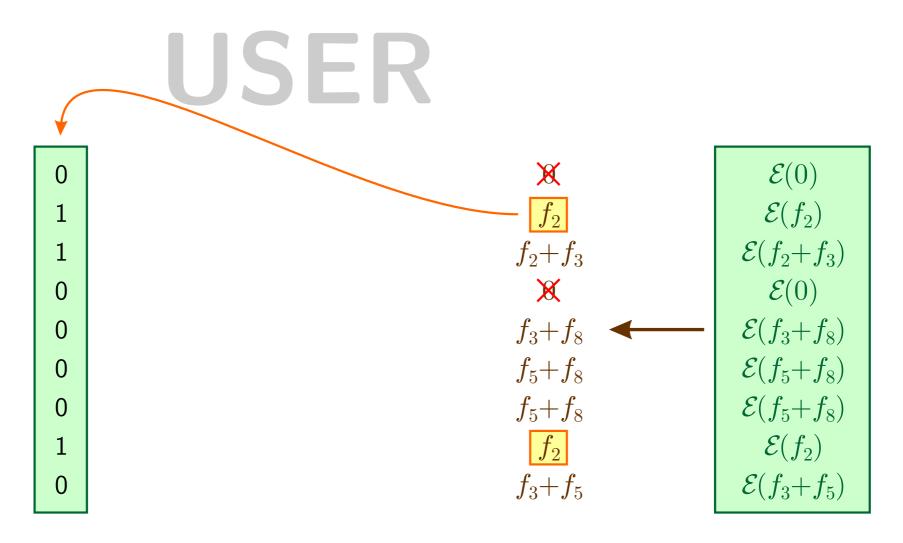
 $\mathcal{E}(0)$ $\mathcal{E}(f_2)$ $\mathcal{E}(f_2+f_3)$ $\mathcal{E}(0)$ $\mathcal{E}(f_3+f_8)$ $\mathcal{E}(f_5+f_8)$ $\mathcal{E}(f_5+f_8)$ $\mathcal{E}(f_2)$ $\mathcal{E}(f_3+f_5)$

× Compute it's syndrome and send it to the user.

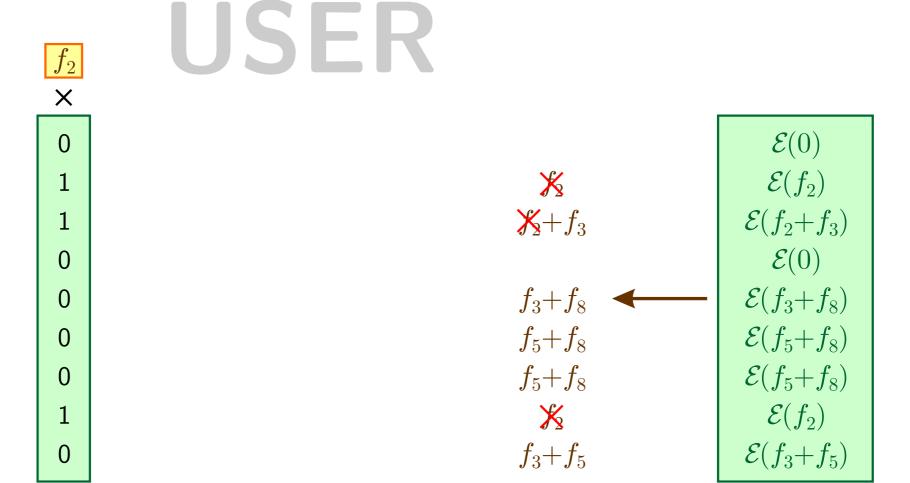
USER



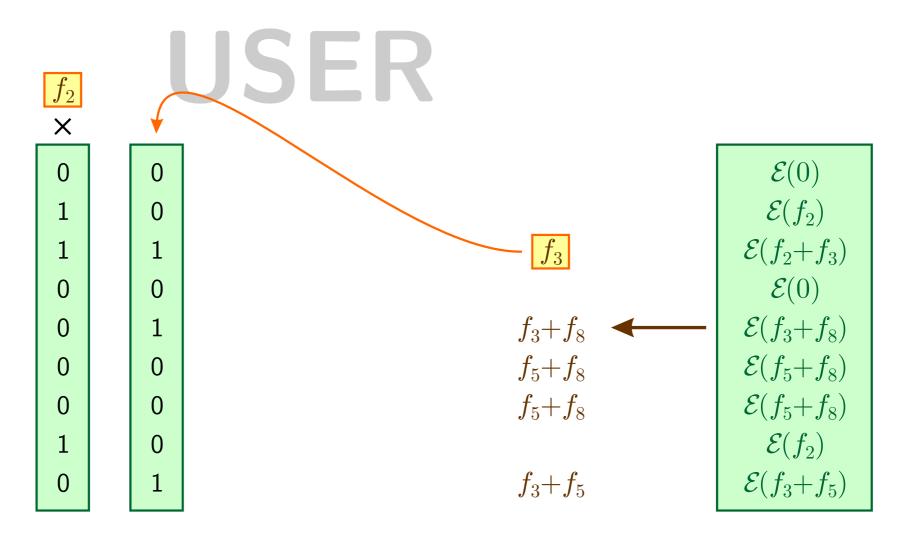
× The user first decrypts the buffer.



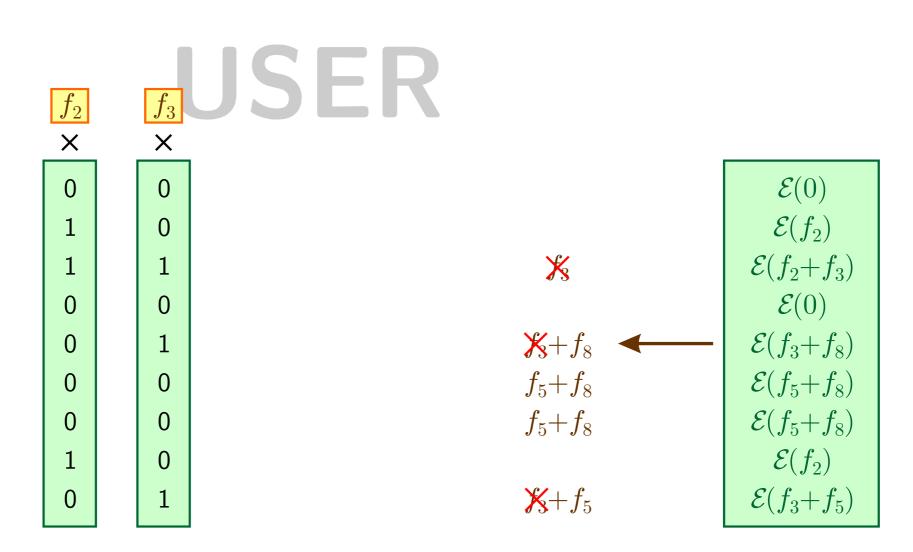
× For each singleton, he can generate its column.



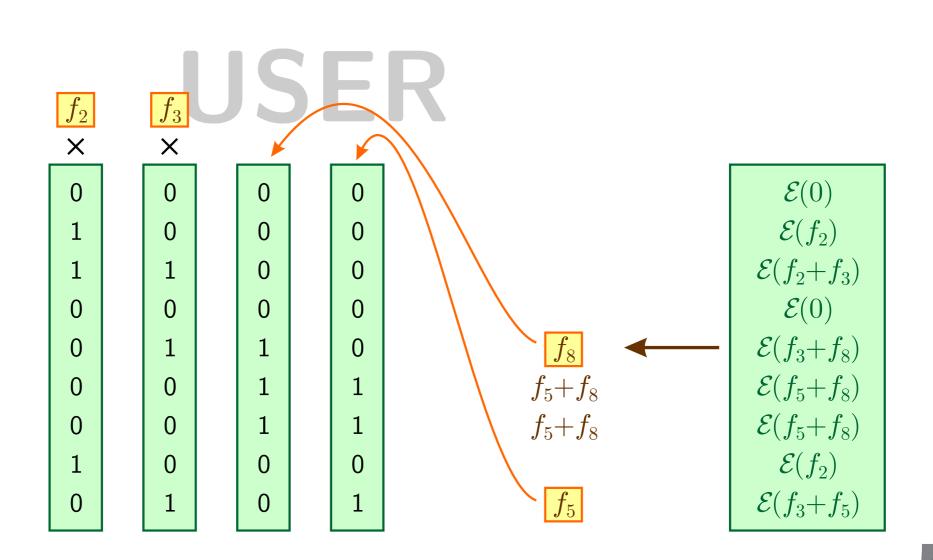
★ He can remove it completely from the buffer.

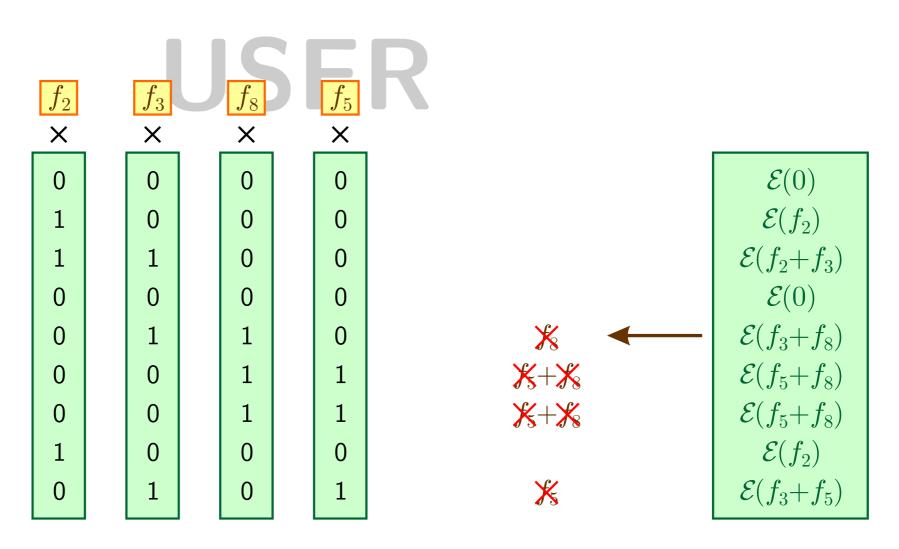


× This uncovers new singletons.



*They can again be stripped from the buffer.



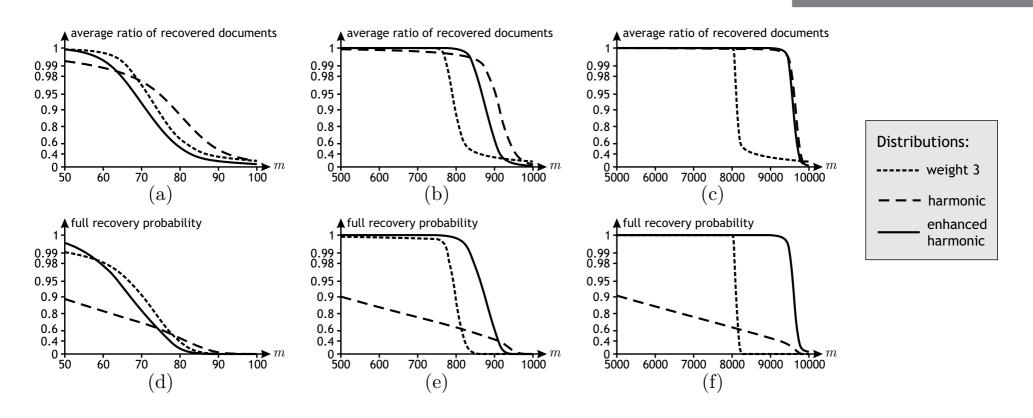


* All documents were recovered when the buffer is 0.

PSS with LDPC codes Analysis

- ★ The whole algorithm is independent of the stream size,
 ★ the buffer size depends only on the number of matches.
- **×** Computationally very efficient:
 - ★ for the server, one "encryption" per document,
 - **x** for the user, one decryption per buffer position
 - → the rest of the decoding is also linear.
- * We have full control on the column distribution,
 - x possible to use constant weight,
 - → not optimal asymptotically,
 - - → use work of Luby, Mitzenmacher, Shokrollahi for asymptotic analysis.

PSS with LDPC codes Simulation results



- **×** Simulations for buffers of sizes 100, 1 000 and 10 000:
 - * for 100, constant weight is as good as irregular,
 - we see the asymptotic limitation of constant weight
 - → at least a ratio 1.22 between buffer/matches.

Conclusion

- **×** Our new Private Stream Search scheme:
 - × compared to the Ostrovsky-Skeith scheme
 - → same computational cost, better communication,
 - ≈ compared to a non-private search
 - → same asymptotic communication cost, additional computations (especially for the server)
- **×** Is it practical?
 - x probably too expensive using Paillier's encryption
 - → lighter homomorphic encryption (lattice based?).
 - × practical from a communication point of view.
- ➤ Would any search engine want to use it?