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utomated media classification is becoming increas-
ingly common in areas ranging from mobile loca-
tion recognition to surveillance systems to 
automated annotation. While these tools can add 
great value to the public sphere, media searches 

often process private information; in such situations, it is 
important to protect the interests of one or both parties. Much 
attention has been given to the scenario where both the server 
and the client wish to keep their data secret, but comparatively 
little work has been done on searches in which only the client’s 
data is sensitive. Nonetheless, there is great potential for appli-
cations involving private searches on public databases like 
Google Images, Flickr, or “Wanted Persons” directories put 
forth by various police agencies. In this article, we make the 
case that one-way private media search is an important and 
practically viable direction for future research. We will intro-
duce readers to some basic one-way privacy tools and present a 
case study outlining the design of a private audio search tool on 
a public database. This case study serves as a backdrop for a dis-
cussion on the role of signal processing techniques in the 
design of privacy-preserving media search systems.

INTRODUCTION
The past few decades have introduced a multitude of applications 
that rely on the ability of devices to classify media, from voice 
transcription to face detection to optical character recognition. In 
a philosophical sense, the ability to classify stimuli is critical to 
learning and decision making; an animal will not flee a predator 
unless it is first able to identify the predator as such. However, 
while living creatures match stimuli to databases stored in their 
own brains, an automated recognition system must often match 
stimuli against an external database due to resource constraints. 
Inherent in this workload distribution is an implicit trust between 
client and server. If the client does not trust the server, is it still 
possible to achieve accurate and fast performance in a private set-
ting? This question has become increasingly relevant in recent 
years, as researchers attempt to mitigate the costs of anonymity.

Explicitly, the inherent privacy problem is the following: If a 
system collects sensitive data for the purpose of recognition, it 
should avoid blindly submitting that data to an external database 
out of concern for the subject’s or the client’s own privacy. For 
example, consider an airport security system that matches the 
faces of travelers to an internationally maintained database of 
faces of suspected terrorists (e.g., Interpol’s “Wanted Persons” 
database) [6]. The airport would like to ensure that travelers are 
not suspected terrorists, but at the same time, Interpol should 
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not receive any information about the travelers whose faces do 
not appear in their database. Thus, the notion of private media 
content recognition is extremely appealing. Although secure bio-
metric authentication is the main application typically cited for 
this research [1], [6], there are many other possible uses, such as 
private image location estimation [7] or speech processing [27].

Traditional media recognition techniques are difficult to 
adapt to the private domain for several reasons. The high com-
putation and communication costs associated with privacy 
primitives constrain the size of media feature spaces in practice, 
but smaller features can also reduce the accuracy of search algo-
rithms. Moreover, cryptography tools are typically exact and 
intolerant of any loss in representation, while media objects are 
inherently distortion tolerant; effective classification algorithms 
tend to exploit this tolerance for performance gains. Reconciling 
these conflicting characteristics can make encrypted-domain 
media content recognition challenging. Nonetheless, the area 
has received significant attention as researchers overcome tech-
nical limitations by exploring new mathematical tools and clev-
erly applying existing mathematical tools.

There are two main classes of problems that deal with the 
described privacy issue. The first class is more stringent and 
assumes that neither the client nor the server is willing to sac-
rifice any information, which applies when the server stores 
sensitive data like medical records or classified information. In 
the context of media searches, this problem has received signifi-
cant attention in recent years with promising results in image 
and speech processing [1], [6], [11], [25], [27]. However, two-
way private media search systems can be heavy in computation 
and/or communication due to the fact that they have very 
strong privacy demands.

The second class of problems assumes that only the client 
wishes to protect his/her data, which applies whenever the data-
base is public. This latter class will be the focus of our discus-
sion. To clarify, a sample diagram of such a system is shown in 

Figure 1. We see here the information flow in a one-way private 
face-recognition system that aims to identify an image of 
Abraham Lincoln. At a high level, the design problem can be 
reduced to specifying three main factors: query masking, query 
processing, and result deciphering.

This second class of user-private media searches has received 
comparatively little attention in the literature; the application 
space is nonetheless ample. Consider, for instance, the wealth of 
information stored on Google Images or Flickr that could be used 
for face or location recognition. Alternatively, in the airport 
example given earlier, the database of suspects is likely to be pub-
lic; many police agencies publish the images of wanted or miss-
ing persons on their Web sites. In the commercial sphere, 
privacy-preserving recommendation systems could improve 
users’ shopping experiences without revealing their preferences 
to companies that are likely to sell that information. One could 
envision services that automatically classify medical data (e.g., 
DNA sequences, electrocardiography signals) by comparing 
against public databases of classification parameters; such tools 
could be useful in areas where medical access is sparse.

The objective of this article is to argue that one-way-private 
content-based media classification is both inevitable and feasible. 
In the interest of readability, we provide a broad view of relevant 
ideas and refer the reader to the literature for more detailed expla-
nations. We begin by briefly explaining the development of private 
media searches over the past decade. This is followed by a descrip-
tion of asymmetric privacy primitives and a design example in the 
form of a user-private music search tool. This tool exemplifies a 
media recognition algorithm that is easy to adapt to the private 
domain, so we will then use similar ideas to explore design princi-
ples in one-way-private media search systems. An important mes-
sage of this article is that pairing privacy primitives with existing 
recognition algorithms is rarely a practical solution in this space 
because of resulting communication and computation costs. 
Rather, efficient private search systems will typically involve 
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[FIg1] System diagram for a one-way private face-recognition system. The client wishes to classify a media file in such a way that the 
server cannot learn information about the client’s query. Red arrows signify data provided by the client, blue arrows by the server, and 
purple by a combination thereof.
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deliberate modifications to existing media recognition algorithms. 
We conclude by going over some major challenges that have yet to 
be overcome in one-way private media searches.

CURRENT SYSTEMS
Private searches place tighter demands on a search algorithm than 
public searches do, and they therefore usually cost more in 
resources like communication and computation. Although the 
notion of private computing is garnering significant public inter-
est, users are ultimately unlikely to tolerate the associated draw-
backs if those drawbacks manifest themselves as significant delay 
and/or increased communication charges. Thus the primary goal 
of most private media matching research is to reduce the total 
resource demands of private search systems [1], [11], [12], [25].

Figure 2 depicts the relative cost profiles of some existing pri-
vate media search techniques. In practice, algorithms often com-
bine several privacy primitives, so the schematic is meant only as 
a qualitative guide to the distribution and magnitude of costs for 
each primitive. The majority of existing schemes belong to the 
outer layer of the figure, i.e., they are two-way private approaches. 
The relations between two-way primitives will be covered in 
greater depth in other articles, but one general trend emerges: 
there is usually a tradeoff between required communication and 
computation. For instance, consider algorithms that rely on 
homomorphic encryption [1], [6]. In these algorithms, the client 
sends an encrypted query to a server, and due to mathematical 
properties of the cryptosystem, the server is able to do computa-
tions on the query despite not knowing its content. Such algo-
rithms are typically computationally heavy (compared to a public 
search), but the communication costs can be fairly low. On the 
other hand, there are schemes that rely on garbled circuits in 
which the server effectively sends a garbled version of the data-
base to the client; the client then extracts a single desired element 
[11], [25]. These schemes require far less computation, but the 
communication costs can be quite high for most practical circuit 
sizes. It is possible to mitigate this cost with locally generated 
hardware tokens [13], but the server must trust the token, which 
is susceptible to tampering in practice.  Researchers have drasti-
cally lessened the individual limitations of these primitives by 
combining them in clever ways [2], [25].

The middle band in Figure 2 indicates primitives guaranteeing 
only one-way privacy. These tools can achieve desired privacy lev-
els at lower computation and communication cost than two-way 
schemes. This comparison is not really fair because the two classes 
solve different problems, but the point is that there is a practical 
reason to treat the two cases differently. One-way privacy tools 
have received very little attention in the context of media searches. 
To our knowledge, Shashank et al. are the only researchers to 
build a system based on one-way private media matching, in the 
form of a hierarchical, user-private image similarity search tool 
[12]. Others have proposed ways of improving the efficiency of 
two-way-private schemes when databases are partially or com-
pletely public [2], [6], [17]. Yet, more than ever, the current tech-
nological and social landscape is conducive to user-private media 
recognition and will presumably continue to evolve in this 

direction. On the cryptographic side, the required tools have only 
recently matured enough to be considered viable. Practically 
speaking, one-way privacy primitives were long thought to be as 
inefficient as transmitting the server’s entire database to the client 
[26]. The issue was not formally addressed until 2011, when Olu-
mofin and Goldberg showed that private queries can actually be 
orders of magnitude more efficient than database transmission in 
practice [16]. In fact, developments in one-way privacy primitives 
have rendered costs sublinear in both communication and com-
putation under certain conditions [3], [5], [29].

On the other hand, public media databases have become 
commonplace only within the last decade (e.g., YouTube, Flickr, 
Facebook, Google Images), and these services did not introduce 
similarity searches until even more recently. The tremendous 
growth of public databases has proved increasingly useful for 
media matching applications and also heightened the potential 
privacy threat to the average user [7]. Indeed, within the last 
year, both Google and Facebook have had to settle lawsuits with 
the Federal Trade Commission for violating the privacy of users 
[22]. In short, the issue of user privacy is a very relevant one, 
both from the client’s and the server’s perspective. The combina-
tion of these factors with cryptographic advances suggest that 
user-private media searches can and should receive increased 
attention in coming years.

PRIVATE QUERIES
We will start by explaining the fundamentals of one-way-private 
cryptographic tools, collectively termed “private queries.” Private 
queries are searches on a database in which both the query and 
the result are masked from the server. The caveats are twofold: the 
client must know exactly what data is desired from the database, 
and the client may learn information about the database besides 
just the desired file during the search process. The latter condition 
is unimportant on public databases, but the fact that the user 
must know precisely what to request is problematic since media 
searches are inherently inexact. We will discuss ways to get around 
this stringent requirement in the section “Case Study: Private 
Audio Recognition System.” The current section describes two 
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representative private query methods used to privately retrieve 
items from a database: one taken from [5] that uses multiple serv-
ers to achieve information-theoretic security, and one based on 
[19] that uses a single server to provide computational security.

MultiServer Private inforMation retrieval
Private information retrieval (PIR) allows a client to retrieve data 
at a particular index in a database without revealing the query (or 
the results) to the server. As mentioned above, there exist PIR 
implementations that require only one server [14], [18], though in 
practice they are significantly less efficient than trivial database 
transfer [26]. We will emphasize multiserver schemes, which can 
achieve communication and computation that is sublinear in 
database size [3], [29]. Multiserver PIR schemes require the exis-
tence of at least two noncolluding servers, each with a duplicate 
copy of the database. This assumption is strong, but not unreason-
able; for instance, one could store data on clouds run by compet-
ing services, e.g., Amazon and Google.

We first describe the most basic PIR scheme from [5]; while the 
communication complexity is order-equivalent to database trans-
fer, it is a useful educational example and can be generalized for 
efficiency gains. Both servers possess copies of a database compris-
ing a binary string { , } ,x 0 1 n!  and the user wishes to retrieve the i
th bit, .xi  The user’s request can be represented by { , } ,e 0 1i

n!  the 
indicator vector with a one at index i and zeros elsewhere. To dis-
guise this query, the user generates a random string { , }a 0 1 n!  
with each entry a Bernoulli ( / )1 2  random variable. The queries 
sent to Servers 1 and 2 are a ei5  and ,a  respectively. Each server 
computes the inner product of its received query vector with the 
database x using bitwise addition (exclusive or, denoted XOR here-
after) and returns a single-bit result. The user XORs the results 
from the two servers to get precisely .xi  The scheme is illustrated 
in Figure 3; if the database consists of indexed files rather than 
bits, the same process is carried out on each bit plane.

This multiserver PIR scheme is information-theoretically 
secure, meaning that an adversary cannot break the scheme 
even with unlimited computing power. Among the PIR schemes 
that require communication linear in database size, this multi-
ple-server version is the lightest because each bit in the database 
is simply XORed once, rather than being processed with 

weightier cryptographic operations. However, by embedding the 
database in a d-dimensional cube, where d 2$  is the number of 
servers, the communication can be further reduced to ( ),O nd  
or ( )O n  in our two-server setup [5]. This simple extension of 
the basic PIR scheme generalizes the idea for multiple servers. 
Meanwhile, other techniques like precomputation have been 
proposed to reduce the computational requirements while main-
taining efficient communication [3], [29].

Single-Server Pir: Private StreaM Search
As mentioned earlier, PIR can be done with a single server at the 
expense of computation and communication [14]; the resulting 
level of security is computational rather than information-
theoretic, so the scheme cannot be broken by an adversary with 
bounded computational resources. We now present such a 
single-server computationally private PIR scheme. In addition to 
our one-way privacy application, the tools used in this scheme 
have mathematical properties suitable for implementations of 
two-way privacy that appear elsewhere in this issue of IEEE Sig-
nal Processing Magazine.

Private stream search (PSS) was originally designed to per-
form private keyword searches on databases [19]. For instance, 
one might want to privately retrieve all files in a text document 
database that contain the word “red.” The problem statement is a 
bit different from that of a PIR query, since the client is no lon-
ger searching for a specific file by index. However, this setup can 
easily be framed as PIR by making the dictionary of keywords 
equal the list of document indices. We will explain the scheme 
from [19] in the context of PIR for ease of comprehension, but 
the original framing of PSS is also useful and represents a differ-
ent variety of private query.

This version of PIR relies on additively homomorphic encryp-
tion, a technique utilized to varying degrees in almost every cur-
rent private media content retrieval scheme. In the general case, 
a public-key cryptosystem composed of encryption function ( )E $  
and decryption function ( )D $  is homomorphic if there exist oper-
ations ( )f1 $  and ( )f2 $  such that ( , ) ( ( ( ), ( )))E Ef x y D f x y1 2=  [24]. 
There are several cryptosystems with this property, but the addi-
tively homomorphic Paillier cryptosystem is used in the majority 
of existing private media content retrieval applications [20]; it is 
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homomorphic with f1 corresponding to addition and f2 to multi-
plication, i.e.,

 ( ) ( ) ( ) .E E Ex y x y+ =  (1)

When x and y are scalar integers, this implies that multiplica-
tion by a constant c takes a particularly simple form

 ( ) ( ) .E Ecx x c=  (2)

One important point is that the Paillier cryptosystem has the 
property of semantic security, which means that a computation-
ally bounded adversary—in this case, the server—cannot derive 
significant information about an encrypted message given only 
the encrypted message and the public encryption key. This defini-
tion implies that the encryption scheme must be random, so suc-
cessive encryptions of the same message cannot be detected as 
such with high probability.

Now we apply this to the single-server PIR problem. Consider 
an ordered list of possible file indices, from one to ,n  with i being 
the desired index. Using an additively homomorphic cryptosystem, 
the client generates an encrypted query vector q of length ,n  with 

( )E 1  at index i and ( )E 0  at the remaining indices. Because the Pail-
lier cryptosystem is randomized, all the entries in this encrypted 
vector will be different with high probability. The encrypted query 
vector is sent to the server, as shown in Figure 4. Now the server 
goes through its database; for every file index, the server checks 
the corresponding entry in the encrypted query vector. This entry, 
which is either ( )E 0  or ( ),E 1  is raised to the power of the whole file 
represented as a number. So if ,i 1=  then ( ),Eq 11 =  giving 

( ) ;E 1 f1  by (2), this quantity is equivalent to the encryption of .f1  
The same procedure is also done for all the other files ,f j  ,j i!  but 
in that case, ( ) ( ) .E E0 0f j =  After going through the whole data-
base, the results of these exponentiations are multiplied together 
and returned to the client. Because of the homomorphic crypto-
system, multiplying ciphertexts corresponds to adding their argu-
ments, so we get ( ) ( ) .E Ef f0 0 0 0i ig g+ + + + + + =  Thus 
the client decrypts precisely the file at the 
desired index. A more detailed explanation 
of the technique is provided in [19], albeit 
in the context of a keyword search.

CASE STUDY: PRIVATE 
AUDIO RECOgNITION SYSTEM
As mentioned in “Introduction” section, a 
practically viable private media search sys-
tem will typically feature a customized 
search algorithm. In the early days of pri-
vacy-preserving signal processing research, 
the focus was mostly on pairing cryptogra-
phy techniques with existing search algo-
rithms [6]. This approach can certainly add 
unnecessary costs, but there do exist accu-
rate search algorithms that are already 
compatible with private searches. We will 

start by presenting a private audio search tool based on precisely 
such an algorithm, i.e., the audio search tool of Haitsma and 
Kalker [10]. The basic premise is as follows: A mobile client has a 
sound clip recorded from a noisy source and wishes to learn the 
name of the song from a remote server without revealing anything 
about the noisy clip to the server. The privacy constraints here are 
contrived, since there is usually no reason to mask one’s musical 
preferences, but this example is meant as a stepping stone to other 
media forms like images and video.

An important limitation of the privacy techniques described 
earlier is that the client must always know the precise search 
index. However, media searches consist of finding similar entries, 
not identical ones; the query will rarely fully match a database 
entry. One way to get around this problem is to find feature vec-
tors in the database that are similar in a holistic sense to a query 
feature vector. This is the approach taken by the majority of pri-
vacy-preserving media recognition systems [2], [6], [12], [17]. A 
different solution, inherent to Haitsma’s and Kalker’s scheme, is 
to conduct an exact search for a broader group of entries that 
probably includes the desired content, and then select the closest 
entry within that set. That is, suppose “Equinox” by John Col-
trane comes on the radio, and a listener wants to learn the song 
title without revealing information to the server. The listener 
does not know exactly which song to search for, but he/she will 
most likely recognize the music genre as jazz. A private search 
for all jazz music will return the desired song (among many oth-
ers), while weeding out a majority of possible files. This example 
is coarser than the actual implementation, but the underlying 
idea is the same. We will start by giving a brief overview of the 
nonprivate audio search scheme before illustrating how one 
could easily adapt it to the private domain; detailed descriptions 
can be found in [10].

original algorithM
Each audio file in the database is represented as a collection of 
time-dependent, quantized audio features called subfingerprints. 
The features describe the frequency-domain content over 
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windowed time frames, and quantization of these features allows 
different, noisy renditions of the same clip to map to the same 
16-b subfingerprint, thereby adding robustness. The longer a song 
is, the more subfingerprints are required to describe it. We will 
describe a slightly modified version of the original algorithm to 
facilitate the transition to the private domain.

On the client end, a 3-s query audio clip, potentially corrupted 
by noise or other distortions, is also converted to a subfingerprint 
representation—3 s of audio map to 256 subfingerprints, which 
are collectively termed a “fingerprint block.” The user sends the 
256 noisy query subfingerprints to the server; for each one, the 
server checks all fingerprint blocks in the database that contain 
the desired value at the desired position. For example, if the first 
subfingerprint has the value ,x0 0003  then the algorithm will find 
all fingerprint blocks that start with the value .x0 0003  If one of 
those blocks is very similar to the query in Hamming distance, a 
match is declared. Otherwise, the server checks the second query 
subfingerprint, and so forth until it has tried all 256 query prints. 
This scheme is illustrated in Figure 5. Note that each time we 
search for the ith of the 256 query subfingerprints, the server 
checks all chunks in the database that exactly match the query 
prints in the ith location; this property sets the stage for an easy 
transition to the private domain.

Private verSion
To make the scheme private, we convert 
every query subfingerprint search to a 
PIR query, thereby hiding all informa-
tion from the server. In our analysis, we 
will assume an underlying multiserver 
PIR scheme, since single-server crypto-
graphic schemes are unlikely to gain 
traction as practical privacy tools. Com-
putationally private schemes require the 
use of asymmetric encryption opera-
tions which, when used with secure key 
sizes, are very expensive. In practice, 
information-theoretically secure PIR 
can be at least 1,000 times faster.

The client begins by converting the 
3-s noisy query to a list of 256 subfinger-
prints, just as before. Now the client 

should (privately) send the subfingerprints to the server to be 
matched. Suppose again that the first subfingerprint takes the 
value x0 0003—however, the client does not know which locations 
in the database hold subfingerprint .x0 0003  By giving the data-
base an inverted structure (i.e., indexing it by subfingerprint 
value), we can frame the problem as a private query. Now the cli-
ent only needs to submit a PIR query for index ,x0 0003  after 
which the server returns all fingerprint blocks containing subfin-
gerprint .x0 0003  Then the client can compare the BER on the 
returned fingerprints to a prespecified threshold. The ith index in 
the database holds all blocks that contain subfingerprint i rather 
than just those that start with i. This is because if the first query 
subfingerprint q0  does not result in a match, we move on to the 
second subfingerprint .q1  Then we seek all blocks that contain q1  
in the second position, and so forth. This is not the only solution, 
but it is a straightforward and relatively communication 
efficient one.

PerforMance
The recognition rate of the algorithm is completely independent 
of the privacy settings because PIR deterministically returns the 
desired file. Ultimately, the clip can only be identified if there is at 
least one exact match in the query fingerprint block. Preliminary 
tests on a random set of 100 popular songs showed that at a typical 
FM radio signal-to-noise ratio (SNR) of 70 dB, this happens 98% of 
the time. For a qualitative notion of the information obtained by 
the server compared to that obtained by the client, Figure 6 gives 
a binary view of various fingerprint blocks. The query block is 
highly correlated with the client’s results, so the difference of the 
two yields very few bit errors, while the difference between the 
server’s output and the query block appears to be totally random. 
Indeed, since the PIR scheme is information-theoretically secure, 
the server learns nothing from a subfingerprint query. A demon-
stration of the audio search system in action can be found on 
http://www.eecs.berkeley.edu/~gfanti/demo_audio.html.

In its basic form, our scheme has a worst-case (and average) 
communication complexity of ( ( ( ), ( )),max p k m nO  where n is 
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the database size and ( )m n  is the expected number of exact 
subfingerprint matches in the database, k is the number of bits 
in each subfingerprint, and ( )p k  is the total communication 
complexity of a PIR search on a list of k-b subfingerprints. For 
good discriminative power and search efficiency, we assume that 
k is chosen according to the database size; if k is chosen as 

( ( )),log nO  then the expected number of matches will scale as 
( )O 1  with the database size, and the dominant communication 

cost will come from the uplink PIR queries. This is good, 
because it means that efficient PIR schemes can reduce the 
communication to sublinear levels.

For the computation costs, increasingly large private queries 
(i.e., increasingly large numbers of bits per subfingerprint) cause 
the server-side computation to dominate. Servers are better suited 
than clients to handle heavy computation, particularly since these 
tasks can be easily parallelized. Also, private query computation 
can be reduced with better PIR schemes like [3] and [29], while 
portions of the algorithm unrelated to privacy cannot be trimmed 
as easily. Table 1 shows a comparison of communication and com-
putation costs in this audio search scheme using various PIR vari-
eties. An important point is that although we can achieve 
sublinear communication and computation, the best known PIR 
schemes have polynomial communication in ,n  and thus cannot 
match the logarithmic costs of nonprivate communication with 
any number of servers.

DESIgN CONSIDERATIONS
The Haitsma and Kalker search algorithm is a useful example 
because only minimal changes are required to make the algorithm 
privacy-preserving. This situation is by no means typical, and good 
systems will usually require special search algorithms offering 
both private-domain compatibility and resource efficiency. Design-
ing such algorithms involves identifying low-dimensional features 
that are conducive to exact comparison, changing actual search 
mechanisms, or both. We will start by discussing some feature 
vector modifications that can make media search algorithms eas-
ier in the private domain; this is followed by a sample face recogni-
tion tool that relies on these techniques and also meshes nicely 
with the audio search tool just presented. We will then touch upon 
ways of modifying search algorithms for private search.

Many media recognition algorithms search for Euclidean-dis-
tance nearest-neighbor vectors in a database [6], [11], [25]. Exact 
matches are convenient for the private query aspect of the algo-
rithm, but it is intuitively clear that nearest-neighbor searches will 
generally give better recognition results. A popular research topic 
in recent years aims to represent arbitrary feature vectors in a way 
that reduces nearest-neighbor searches to a Hamming distance 
comparison, which is computationally lighter in both the private 
and nonprivate domain. A lot of this work relies on locality-sensi-
tive hashing techniques that provide probabilistic noise resistance. 
For instance, [30] and [15] have explored a simple but effective 
hashing technique: project both vectors onto a set of random 
hyperplanes and record the sign (+/-) of each projection for each 
vector. It turns out that the Hamming distance of these binary 
hash vectors is a probabilistic estimate of Euclidean distance. 

Indeed, Min et al. found this technique to give 95% accurate near-
est-neighbor estimates at a fraction of the cost for high-dimen-
sional features like gist [15]. Other less-studied feature 
modifications may be introduced specifically for a given applica-
tion; examples include the quantization techniques used in [2] and 
distance-preserving hashing in [21]. We used examples from the 
two-way privacy literature since there are not many one-way pri-
vate systems in existence.

To give a simple example of how feature vector alteration can 
be useful for one-way privacy, suppose we are identifying facial 
images with the Eigenfaces algorithm [28]. All images in the sys-
tem have an associated feature vector, obtained through projection 
onto a basis of so-called “Eigenfaces”; the details of feature vector 
extraction are not important here. The original search algorithm 
consists of finding the closest database feature vector in Euclidean 
distance to the normalized query feature vector. Using the locality-
sensitive hashing technique explained above, we can hash all these 
feature vectors to obtain a sequence of bits that can simply be 
grouped into “subfingerprints” as before. It is then straightforward 
to apply Haitsma and Kalker’s algorithm to the private face recog-
nition problem (or any other problem involving feature vector 
nearest neighbor matching). Figure 7 illustrates how to modify an 
arbitrary feature vector for compatibility with the exact-match 
search scheme of [10]. We implemented a face recognition system 
based on this approach, and a demonstration video can be seen at 
http://www.eecs.berkeley.edu/~gfanti/demo_face.html. Table 2 
gives asymptotic communication and computation costs for this 
face recognition scheme as well as two benchmark two-way pri-
vacy schemes [17], [25]. Again, the comparison is not fair since the 
two-way private schemes solve a fundamentally harder problem, 
but we wish to highlight that order-level gains can be had by 
exploiting one-way privacy. In addition, the system for secure 
computation of face identification (SCiFI) also has much higher 
accuracy than the Eigenfaces algorithm.

A complementary tactic is to modify or specifically design 
search algorithms for private search. This is done to varying 
degrees in most privacy-preserving media search systems by alter-
ing overarching factors like database structure or search algo-
rithms [6], [11], [12], [25]. In the context of privacy-conscious 
design, there are also some seemingly secondary issues that none-
theless require attention. One such issue is feature size—in the 
nonprivate domain, there are ways to handle the comparison of 

[TABLE 1] ASYMPTOTIC COMMUNICATION AND  
COMPUTATION COSTS FOR PRIVACY-PRESERVINg  
AND NONPRIVATE AUDIO SEARCh.

PRIVACY SChEME COMMUNICATION COMPUTATION
Two-server PIr, sec. 3.1 ( )O n ( )O n

Two-server PIr [3] ( )O n3 O
log n
n

2` j

sIngle-server PIr [14] ( ),O nc  for any c 02 ( )O n

nonPrIvaTe [10] ( )logO n ( )logO n

n is database size and k is number of bits per subfingerprint. for consistency, we choose 
logk n=  in both the private and nonprivate audio search schemes.
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differently-sized features, but these methods can rely on computa-
tionally heavy metrics like the earth mover’s distance or Levensh-
tein distance. These techniques are impractical in the private 
domain, so it’s important to ensure that the feature space is 
directly comparable between the database and the queries, as with 
the subfingerprints in the audio search scheme. Another issue is 
alignment—query media files collected in an uncontrolled envi-
ronment are likely not aligned in the same way as the database 
files. Once again, standard alignment algorithms are difficult to 
execute in the private domain, so the issue merits special atten-
tion. An excellent example of a scheme that addresses all these 
issues and was fully designed for the private domain is the SCiFI 
system by Osadchy et al. [17]. By defining faces as a collection of 
items from dictionaries of face parts and part locations, the 
authors facilitate comparison in the encrypted domain. Specifi-
cally, the recognition step is defined by whether a set difference (a 
Hamming distance calculation) is above or below a threshold. This 
kind of search algorithm overhaul can lead to better recognition 
rates and fewer unnecessary algorithm inefficiencies.

ChALLENgES AND FUTURE DIRECTIONS
One-way privacy techniques are still a long way away from public 
use, due in large part to the inefficiency of known one-way pri-
vacy techniques. However, as media recognition becomes a main-
stream feature, this increasingly relevant area of study is likely to 
gain significance. The major remaining issues are twofold. On 
the cryptographic front, there are a few research areas that would 
facilitate the commercialization of one-way private queries. One 
of the most appealing is the development of fully homomorphic 
encryption schemes. Fully homomorphic schemes would permit 
computation of encrypted domain functions involving multipli-
cations and additions, rather than just one operation [8]. This 

option is currently far from viable due to efficiency limitations, 
but it is nonetheless an active field. There is also ongoing work 
on improving classical private queries through techniques like 
preprocessing [3]. In a completely different vein, recent research 
on quantum private queries has suggested as much as an expo-
nential reduction in computational and communication effi-
ciency with respect to existing classical implementations [9]. 
Quantum private queries are still in the very early stages of devel-
opment, but their realization would impact privacy-preserving 
tactics immensely.

An important point is that feature vectors, whether hashed or 
not, should not be sent directly to the database because they con-
tain information about the original query. In the face recognition 
schemes, for instance, we perfectly masked the hash bits in the 
form of a PIR query, just like in the audio search of 
the section “Case Study: Private Audio Recognition System.” How-
ever, it would be even better if we could do away with privacy 
primitives entirely and instead rely on privacy-inherent feature 
representations. To this end, some researchers are trying to build 
methods for giving feature vectors privacy properties without the 
bulk of cryptography techniques. For instance, [23] showed that 
compressed sensing measurements offer both dimensionality 
reduction and computationally secure privacy. Similarly, works 
like [4] and [21] have used quantized and masked feature vectors 
in two-way private scenarios to significantly reduce communica-
tion costs while providing privacy in different scenarios. It is not 
clear yet whether such techniques will have a place in privacy-pre-
serving media searches on public databases, but the idea is cer-
tainly appealing from a number of perspectives.

The relevance of these componentwise advances will ultimately 
depend on the availability of signal processing algorithms that are 
able to integrate them. In the absence of good universal media 

search algorithms, we must focus 
on finding representations of data 
and associated search schemes that 
give minimal accuracy loss and effi-
cient operation in the private 
domain. For instance, nearest-
neighbor approaches can be used on 
arbitrary media feature vectors and 
can be recast for the one-way pri-
vate domain with locality-sensitive 

[FIg7] Method for converting arbitrary feature vectors into “subfingerprints.” This facilitates a private search similar to the one used in the 
previously described audio search. hi denotes a randomly drawn m-dimensional hyperplane, where m is the original feature vector length.
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[TABLE 2] FACE RECOgNITION ASYMPTOTIC COMMUNICATION  
AND COMPUTATION COSTS FOR PRIVACY-PRESERVINg FACE RECOgNITION. 

ALgORIThM PRIVACY SChEME COMMUNICATION COMPUTATION
HasHed eIgenfaces Two-server PIr [3] ( )O n3 O

log n
n

2` j
eIgenfaces [25] HomomorPHIc enc., garbled cIrcuITs ( )O n ( )O n
scifI [17] oblIvIous Transfer ( )O n ( )O n

”Hashed eigenfaces” refers to our suggested scheme, and we also compare this to the online complexities of two benchmark face 
recognition systems [17], [25]. we chose logk n=  in the hashed scheme, where k is subfingerprint length and n is the number of 
faces in the database.
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hashing methods. The goal is to find analogous conversion 
schemes with high accuracy, applicability, and costs sublinear in 
database size. Meanwhile, many of the most successful media-
matching algorithms are computationally complex and require 
tools that are currently too heavy for the encrypted domain. If the 
engineering community wishes to pursue private media search as 
a viable technology—and there is strong incentive to do so—then 
sufficiently accurate classification algorithms must be developed 
that can easily be adapted to the private domain. Whether enabled 
by cryptographic advances or signal processing ones, this compati-
bility requirement will play a large role in determining what kinds 
of applications can ultimately be supported in a private setting.
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