Direct Construction of Recursive MDS Diffusion Layers using Shortened BCH Codes

Daniel Augot and Matthieu Finiasz

× Diffusion layers in a block cipher/SPN should:

- \times obviously, offer good diffusion,
 - → have a large *branch number*,
- $\ensuremath{\Join}$ be efficient to evaluate,
 - → both in *software* and *hardware* implementations.
- × usually, be linear,
 - → simplifies analysis/security proofs.
- **×** MDS matrices offer optimal diffusion:
 - \times they have the highest possible branch number,
 - × but large MDS matrices are slow to evaluate
 - → cannot be sparse, no symmetries...

***** Recursive MDS matrices come from companion matrices, \times such that their *k*-th power is MDS.

$$C = \begin{pmatrix} 0 & 1 & 0 \\ 0 & \ddots & \\ 0 & 0 & 1 \\ c_0 & c_1 & \dots & c_{k-1} \end{pmatrix} \text{ and } C^k \text{ is MDS.}$$

x compact hardware implementation,

 \rightarrow can be seen as an LFSR, or a generalized Feistel, × efficient for well chosen c_i . × Such matrices can be found through exhaustive search:

- \times pick good/efficient values c_i ,
- \times check if C^k is MDS
 - \rightarrow all minors (of any size) of C^k should be non-zero.
- × [Sajadieh et al. FSE 2012]

 \rightarrow exhibit intersting 4 \times 4 matrices.

× [Wu *et al.* - SAC 2013]

→ focus on the number of binary XORs.

★ [Augot, Finiasz - ISIT 2013]→ replace symbolic computations with GF operations.

× Such matrices can be found through exhaustive search:

- \times pick good/efficient values c_i ,
- \times check if C^k is MDS
 - \rightarrow all minors (of any size) of C^k should be non-zero.

Pros: possible to target specific companion matrices.
 × focus more on software or hardware.

★ Cons: too expensive for large matrices.
 ※ for a full layer diffusion in the AES, 2¹²⁸ possiblities.
 → It would be nice to have direct constructions.

Recursive MDS Matrices as Cyclic Codes

Understanding the Matrix Structure

× A companion matrix can be associated to a polynomial:

$$g(X) = X^{k} + c_{k-1}X^{k-1} + \cdots + c_{1}X + c_{0}$$

× For k = 3, for example:

$$C = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ c_0 & c_1 & c_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ X^3 \mod g(X) \end{pmatrix}$$

Then:

$$C^{2} = \begin{pmatrix} 0 & 0 & 1 \\ X^{3} \mod g(X) \\ X^{4} \mod g(X) \end{pmatrix}, C^{3} = \begin{pmatrix} X^{3} \mod g(X) \\ X^{4} \mod g(X) \\ X^{5} \mod g(X) \end{pmatrix}$$

Understanding the Matrix Structure

★ C^k is MDS iff $G = (C^k | Id_k)$ generates an MDS code, → we are looking for MDS codes generated by:

$$G = \begin{pmatrix} X^3 \mod g(X) & | 1 & 0 & 0 \\ X^4 \mod g(X) & | 0 & 1 & 0 \\ X^5 \mod g(X) & | 0 & 0 & 1 \end{pmatrix}$$

★ Each line of the matrix/codeword is a multiple of g(X)
 → for some g(X), this defines a cyclic code!

Understanding the Matrix Structure

★ C^k is MDS iff $G = (C^k | Id_k)$ generates an MDS code, → we are looking for MDS codes generated by:

$$G = \begin{pmatrix} X^3 \mod g(X) & | 1 & 0 & 0 \\ X^4 \mod g(X) & | 0 & 1 & 0 \\ X^5 \mod g(X) & | 0 & 0 & 1 \end{pmatrix}$$

★ Each line of the matrix/codeword is a multiple of g(X)
 → for some g(X), this defines a cyclic code!

★ A cyclic code is an ideal of F_q[X]/(Xⁿ + 1):
☆ defined by a generator g(X) which divides Xⁿ + 1,
☆ with dimension k = n - deg(g),
→ we need polynomials g(X) defining MDS cyclic codes

- Computing the minimal distance of a cyclic code is hard
 % for some constructions, lower bounds exist.
- **×** To define a BCH code over F_q :
 - × pick β in some extension F_{q^m} of F_q , and integers d, ℓ × compute $g(X) = \text{lcm}(\text{Min}_{F_q}(\beta^{\ell}), ..., \text{Min}_{F_q}(\beta^{\ell+d-2}))$ × g(X) defines a cyclic code of length $n = \text{ord}(\beta)$ → its minimal distance is $\geq d$

- Computing the minimal distance of a cyclic code is hard
 % for some constructions, lower bounds exist.
- **×** To define a BCH code over F_q :
 - × pick β in some extension F_{q^m} of F_q , and integers d, ℓ × compute $g(X) = \operatorname{lcm}(\operatorname{Min}_{F_q}(\beta^{\ell}), ..., \operatorname{Min}_{F_q}(\beta^{\ell+d-2}))$ × g(X) defines a cyclic code of length $n = \operatorname{ord}(\beta)$ → its minimal distance is $\geq d$
- ★ The dimension of the code is n deg(g):
 ∞ so, the code is MDS if deg(g) = d 1
 → the β^{ℓ+i} need to be "mutual conjugates".

The input and output size of a diffusion layer are equal \times we need a code of dimension k and length 2k.

$$G = \left(\begin{array}{c|c} C^k & Id_k \\ \vdots \\ k & k \end{array}\right) \right\} k$$

★ For a BCH, we need β of order 2k
 ∞ impossible in a field of characteristic 2,
 → build a longer BCH code, and shorten it.

- The input and output size of a diffusion layer are equal \times we need a code of dimension k and length 2k.
- × Pick a element β of order 2k + z× use k consecutive powers of β for a g(X) of degree k, × shorten the code on its z last positions.

$$G = \begin{pmatrix} X^{3} \mod g(X) & 1 & 0 & 0 & 0 \\ X^{4} \mod g(X) & 0 & 1 & 0 & 0 \\ X^{5} \mod g(X) & 0 & 0 & 1 & 0 \\ X^{6} \mod g(X) & 0 & 0 & 1 \end{pmatrix} \begin{cases} k+z \\ k+z \end{cases}$$

- The input and output size of a diffusion layer are equal \times we need a code of dimension k and length 2k.
- × Pick a element β of order 2k + z× use k consecutive powers of β for a g(X) of degree k,
 - \times shorten the code on its *z* last positions.

$$G' = \left(\begin{array}{c|c} X^3 \mod g(X) & 1 & 0 & 0 \\ X^4 \mod g(X) & 0 & 1 & 0 \\ X^5 \mod g(X) & 0 & 0 & 1 \\ \end{array} \right) \right\}^k$$

- × The input and output size of a diffusion layer are equal × we need a code of dimension k and length 2k.
- **×** Pick a element β of order 2k + z
 - × use k consecutive powers of β for a g(X) of degree k,
 - \times shorten the code on its *z* last positions.
- Shortening removes some words from the code:
 × it can only increase its minimal distance,
 × if a code is MDS, shortening it preserves the MDS property.

Direct Constructions

A First Direct Construction

★ For a base field of size q = 2^s: ≈ pick β of order q + 1 → q + 1 divides q² - 1 so β is always in F_{q²}, ≈ appart for β⁰ = 1, Min_{Fq}(βⁱ) is always of degree 2 → each βⁱ has a single conjugate β^{qi} = β⁻ⁱ

× For a diffusion layer of k elements of F_q : × if k is even, use all the β^i with $i \in \left[\frac{q-k}{2} + 1, \frac{q+k}{2}\right]$, × if k is odd, use all the β^i with $i \in \left[-\frac{k-1}{2}, \frac{k-1}{2}\right]$.

A First Direct Construction

★ For a base field of size q = 2^s: ≈ pick β of order q + 1 → q + 1 divides q² - 1 so β is always in F_{q²}, ≈ appart for β⁰ = 1, Min_{Fq}(βⁱ) is always of degree 2 → each βⁱ has a single conjugate β^{qi} = β⁻ⁱ

★ We get a [q + 1, q + 1 - k, k + 1]_q MDS BCH code
∞ we shorten it on (q + 1 - 2k) positions,
∞ we get a [2k, k, k + 1]_q MDS code,
→ gives a k × k recursive MDS matrix.

Exhaustive Search on BCH Codes

× For a diffusion of k elements of F_q we can search all possible BCH codes in a time polynomial in q and k.

for
$$z \leftarrow 1$$
 to $(q + 1 - 2k)$, with z odd do
 $\alpha \leftarrow \text{primitive } (2k + z)$ -th root of unity of F_q
forall the $\beta = \alpha^i$ such that $\operatorname{ord}(\beta) = 2k + z$ do
for $\ell \leftarrow 0$ to $(2k + z - 2)$ do
 $g(X) \leftarrow \prod_{j=0}^{k-1} (X - \beta^{\ell+j})$
if $g(X) \in F_q[X]$ then (test if g has its coefficients in F_q)
 $| S \leftarrow S \cup \{g(X)\}$
end
end
end
return S

× The direct construction gives symmetric solutions: \approx only $\frac{k}{2}$ different coefficients,

- × the inverse diffusion is "the same" as the diffusion,
- \times No limit to the diffusion size:
 - \rightarrow 1024 bits using 128 elements of F_{256} ,
 - \rightarrow 2304 bits using 256 elements of F₅₁₂.

★ The exhaustive search gives many solutions:
 ∞ we rediscover many previously found matrices,
 ∞ some are of little interest (complicated coefficients),
 ∞ some are very nice:
 → Comp(1, α³, α, α³)⁴ is MDS (for α⁴ + α + 1 = 0).

➤ All recursive matrices come from shortened cyclic codes:
 ∞ but not all MDS cyclic codes are BCH codes,
 → we could try to explore other families,

× most cyclic codes have unknown minimal distance.

- Shortening a code can increase its minimal distance:
 × this is what happens with the Photon matrix,
 - × the 4 × 4 matrix comes from a code of length $2^{24} 1$: → it has minimal distance 3,

→ once shortened to a length 8, it grows to 5 (MDS).

We need to find an explicit construction of such short matrices!