Direct Construction of Recursive MDS Diffusion Layers using Shortened BCH Codes

Daniel Augot and Matthieu Finiasz

CRYPTOEXPERTS ${ }^{\text {吅 }}$
※ Diffusion layers in a block cipher/SPN should:

* obviously, offer good diffusion,
\rightarrow have a large branch number,
\& be efficient to evaluate,
\rightarrow both in software and hardware implementations.
*usually, be linear,
\rightarrow simplifies analysis/security proofs.
*MDS matrices offer optimal diffusion:
* they have the highest possible branch number,
* but large MDS matrices are slow to evaluate
\rightarrow cannot be sparse, no symmetries...
\times Recursive MDS matrices come from companion matrices, «such that their k-th power is MDS.

$$
C=\left(\begin{array}{cccc}
0 & 1 & & 0 \\
0 & & \ddots & \\
0 & 0 & 1 \\
c_{0} & c_{1} & \ldots & c_{k-1}
\end{array}\right) \text { and } C^{k} \text { is MDS. }
$$

x Introduced in LED and Photon: [Guo et al. - Crypto 2011]

* compact description,
\approx compact hardware implementation,
\rightarrow can be seen as an LFSR, or a generalized Feistel,
* efficient for well chosen c_{i}.
* Such matrices can be found through exhaustive search: \& pick good/efficient values c_{i}, « check if C^{k} is MDS
\rightarrow all minors (of any size) of C^{k} should be non-zero.
x[Sajadieh et al. - FSE 2012] \rightarrow exhibit intersting 4×4 matrices.
$x[$ Wu et al. - SAC 2013]
\rightarrow focus on the number of binary XORs.
* [Augot, Finiasz - ISIT 2013] \rightarrow replace symbolic computations with GF operations.
\times Such matrices can be found through exhaustive search: * pick good/efficient values c_{i},
« check if C^{k} is MDS
\rightarrow all minors (of any size) of C^{k} should be non-zero.
× Pros: possible to target specific companion matrices. \& focus more on software or hardware.
\times Cons: too expensive for large matrices. \approx for a full layer diffusion in the AES, 2^{128} possiblities. \rightarrow It would be nice to have direct constructions.

Recursive MDS

Matrices as Cyclic Codes

Understanding the Matrix Structure

* A companion matrix can be associated to a polynomial:

$$
g(X)=X^{k}+c_{k-1} X^{k-1}+\cdots+c_{1} X+c_{0}
$$

*For $k=3$, for example:

$$
C=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
c_{0} & c_{1} & c_{2}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
X^{3} & \bmod g(X)
\end{array}\right)
$$

Then:

$$
C^{2}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
X^{3} \bmod g(X) \\
X^{4} \bmod g(X)
\end{array}\right), C^{3}=\left(\begin{array}{l}
X^{3} \bmod g(X) \\
X^{4} \bmod g(X) \\
X^{5} \bmod g(X)
\end{array}\right) .
$$

Understanding the Matrix Structure

$\times C^{k}$ is MDS iff $G=\left(C^{k} \mid I d_{k}\right)$ generates an MDS code, \rightarrow we are looking for MDS codes generated by:

$$
G=\left(\begin{array}{l|lll}
X^{3} \bmod g(X) & 1 & 0 & 0 \\
X^{4} \bmod g(X) & 0 & 1 & 0 \\
X^{5} \bmod g(X) & 0 & 0 & 1
\end{array}\right)
$$

\times Each line of the matrix/codeword is a multiple of $g(X)$ \rightarrow for some $g(X)$, this defines a cyclic code!

Understanding the Matrix Structure

$x C^{k}$ is MDS iff $G=\left(C^{k} \mid I d_{k}\right)$ generates an MDS code, \rightarrow we are looking for MDS codes generated by:

$$
G=\left(\begin{array}{l|lll}
X^{3} \bmod g(X) & 1 & 0 & 0 \\
X^{4} \bmod g(X) & 0 & 1 & 0 \\
X^{5} \bmod g(X) & 0 & 0 & 1
\end{array}\right)
$$

\times Each line of the matrix/codeword is a multiple of $g(X)$ \rightarrow for some $g(X)$, this defines a cyclic code!
\times A cyclic code is an ideal of $F_{q}[X] /\left(X^{n}+1\right)$: \approx defined by a generator $g(X)$ which divides $X^{n}+1$, \approx with dimension $k=n-\operatorname{deg}(g)$,
\rightarrow we need polynomials $g(X)$ defining MDS cyclic codes
\times Computing the minimal distance of a cyclic code is hard \approx for some constructions, lower bounds exist.
x To define a BCH code over F_{q} :
« pick β in some extension $\mathrm{F}_{q^{m}}$ of F_{q}, and integers d, ℓ
\approx compute $g(X)=\operatorname{Icm}\left(\operatorname{Min}_{F_{q}}\left(\beta^{\ell}\right), \ldots, \operatorname{Min}_{F_{q}}\left(\beta^{\ell+d-2}\right)\right)$
$\approx g(X)$ defines a cyclic code of length $n=\operatorname{ord}(\beta)$ \rightarrow its minimal distance is $\geq d$
\times Computing the minimal distance of a cyclic code is hard \approx for some constructions, lower bounds exist.
$*$ To define a BCH code over F_{q} :

* pick β in some extension $\mathrm{F}_{q^{m}}$ of F_{q}, and integers d, ℓ
\approx compute $g(X)=\operatorname{Icm}\left(\operatorname{Min}_{F_{q}}\left(\beta^{\ell}\right), \ldots, \operatorname{Min}_{F_{q}}\left(\beta^{\ell+d-2}\right)\right)$
$\approx g(X)$ defines a cyclic code of length $n=\operatorname{ord}(\beta)$ \rightarrow its minimal distance is $\geq d$
\times The dimension of the code is $n-\operatorname{deg}(g)$:
$*$ so, the code is MDS if $\operatorname{deg}(g)=d-1$
\rightarrow the $\beta^{\ell+i}$ need to be "mutual conjugates".
* The input and output size of a diffusion layer are equal \approx we need a code of dimension k and length $2 k$.

\times For a BCH, we need β of order $2 k$
\approx impossible in a field of characteristic 2 ,
\rightarrow build a longer BCH code, and shorten it.
\times The input and output size of a diffusion layer are equal \approx we need a code of dimension k and length $2 k$.
\times Pick a element β of order $2 k+z$
* use k consecutive powers of β for a $g(X)$ of degree k, \approx shorten the code on its z last positions.

$$
G=\underbrace{\left(\left.\begin{array}{l}
X^{3} \bmod g(X) \\
X^{4} \bmod g(X) \\
X^{5} \bmod g(X) \\
X^{6} \bmod g(X) \\
\hline
\end{array} \right\rvert\, \begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)}_{k} \underbrace{}_{k+z}\} k+z
$$

\times The input and output size of a diffusion layer are equal \approx we need a code of dimension k and length $2 k$.
\times Pick a element β of order $2 k+z$
$*$ use k consecutive powers of β for a $g(X)$ of degree k, \approx shorten the code on its z last positions.

$$
G^{\prime}=\underbrace{\left(\begin{array}{l|lll}
X^{3} \bmod g(X) & 1 & 0 & 0 \\
X^{4} \bmod g(X) & X^{5} \bmod g(X) & 1 & 0 \\
0 & 0 & 1 \\
X^{5} \bmod
\end{array}\right)}_{k} \underbrace{}_{k}
$$

$*$ The input and output size of a diffusion layer are equal \approx we need a code of dimension k and length $2 k$.
\times Pick a element β of order $2 k+z$
$*$ use k consecutive powers of β for a $g(X)$ of degree k, \approx shorten the code on its z last positions.

* Shortening removes some words from the code: *it can only increase its minimal distance, * if a code is MDS, shortening it preserves the MDS property.

Direct Constructions

A First Direct Construction

\times For a base field of size $q=2^{s}$:

* pick β of order $q+1$
$\rightarrow q+1$ divides $q^{2}-1$ so β is always in $\mathrm{F}_{q^{2}}$,
\approx appart for $\beta^{0}=1, \operatorname{Min}_{F_{q}}\left(\beta^{i}\right)$ is always of degree 2 \rightarrow each β^{i} has a single conjugate $\beta^{q i}=\beta^{-i}$
\times For a diffusion layer of k elements of F_{q} :
x if k is even, use all the β^{i} with $i \in\left[\frac{q-k}{2}+1, \frac{q+k}{2}\right]$,
x if k is odd, use all the β^{i} with $i \in\left[-\frac{k-1}{2}, \frac{k-1}{2}\right]$.

A First Direct Construction

\times For a base field of size $q=2^{s}$:

* pick β of order $q+1$
$\rightarrow q+1$ divides $q^{2}-1$ so β is always in $\mathrm{F}_{q^{2}}$,
\approx appart for $\beta^{0}=1, \operatorname{Min}_{F_{q}}\left(\beta^{i}\right)$ is always of degree 2 \rightarrow each β^{i} has a single conjugate $\beta^{q i}=\beta^{-i}$
\times We get a $[q+1, q+1-k, k+1]_{q}$ MDS BCH code \approx we shorten it on $(q+1-2 k)$ positions, * we get a $[2 k, k, k+1]_{q}$ MDS code,
\rightarrow gives a $k \times k$ recursive MDS matrix.

Exhaustive Search on BCH Codes

* For a diffusion of k elements of F_{q} we can search all possible BCH codes in a time polynomial in q and k.
for $z \leftarrow 1$ to $(q+1-2 k)$, with z odd do
$\alpha \leftarrow$ primitive $(2 k+z)$-th root of unity of F_{q} forall the $\beta=\alpha^{i}$ such that $\operatorname{ord}(\beta)=2 k+z$ do for $\ell \leftarrow 0$ to $(2 k+z-2)$ do
$g(X) \leftarrow \prod_{j=0}^{k-1}\left(X-\beta^{\ell+j}\right)$
if $g(X) \in \mathrm{F}_{q}[X]$ then (test if g has its coefficients in F_{q}) $\mathcal{S} \leftarrow \mathcal{S} \cup\{g(X)\}$
end end end
end
return \mathcal{S}

What Was Found

* The direct construction gives symmetric solutions: *only $\frac{k}{2}$ different coefficients,
\approx the inverse diffusion is "the same" as the diffusion,
* No limit to the diffusion size:
$\rightarrow 1024$ bits using 128 elements of F_{256},
$\rightarrow 2304$ bits using 256 elements of F_{512}.
\times The exhaustive search gives many solutions:
\approx we rediscover many previously found matrices, x some are of little interest (complicated coefficients),
* some are very nice:
$\rightarrow \operatorname{Comp}\left(1, \alpha^{3}, \alpha, \alpha^{3}\right)^{4}$ is MDS (for $\left.\alpha^{4}+\alpha+1=0\right)$.

What Was Not Found

* All recursive matrices come from shortened cyclic codes: * but not all MDS cyclic codes are BCH codes, \rightarrow we could try to explore other families, * most cyclic codes have unknown minimal distance.
\times Shortening a code can increase its minimal distance:
* this is what happens with the Photon matrix,
* the 4×4 matrix comes from a code of length $2^{24}-1$:
\rightarrow it has minimal distance 3,
\rightarrow once shortened to a length 8 , it grows to 5 (MDS).
\times We need to find an explicit construction of such short matrices!

