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ABSTRACT
The ability to search databases by providing multimedia ex-
amples of voices, faces, or locations instead of textual de-
scriptions can be tremendously useful. At the same time,
uploading media for queries—especially media that contains
sensitive content—means sharing private information with
a potentially untrusted service provider. The growing field
of privacy-preserving database searches attempts to resolve
this tension. Within this scope of private searches, private
media classification and retrieval is particularly challenging
due to the inherent inexactness of recognition; to be useful,
image or other media classification systems must identify
approximate matches rather than just exact ones. This is
difficult to reconcile with distortion-intolerant and resource-
heavy privacy primitives, especially in web-scale databases.
In this paper, we present an architecture for media clas-
sification on public databases that preserves client privacy
while achieving asymptotic communication and computa-
tion costs that are sublinear in the size of the database. We
demonstrate the usefulness of this architecture in the con-
text of a privacy-preserving face recognition system. We ob-
serve order-of-magnitude speedups over state-of-the-art pri-
vate face recognition systems.
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1. INTRODUCTION
Query-by-example tools allow clients to search a database

by uploading examples of intended results. Media domain
applications of these tools (e.g., user voice authentication,
image similarity searches, or location estimation from cam-
era input) are becoming increasingly widespread. Due to
resource constraints on devices like mobile phones, these
queries are often outsourced to externally-managed servers
for speed and efficiency. However, queries to servers can
reveal detailed and potentially sensitive information about
clients; search engine data leaks over the past decade have
made this abundantly clear [1, 2]. The information rich-
ness of queries poses significant privacy concerns, insomuch
as client behavior is being monitored and monetized to an
unprecedented degree [3, 4, 5]. The problem arises in part
because this information can be viewed by several parties,
including mobile service providers that communicate the re-
quests, hackers that illegally access server records, govern-
ment bodies that legally do so, and of course the server itself.

For these reasons, it is important to develop tools that
enable servers to process queries-by-example in a privacy-
preserving manner. In particular, our problem of interest is
as follows (Figure 1): A client possesses a noisy media object
(e.g. a facial image captured in uncontrolled conditions),
while a clean version of the object is stored in a server-
maintained database. The client wishes to learn the identity
of the query without revealing any information about the
query to the server. This classification task is a special case
of “soft” private queries.
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Figure 1: Block diagram of the problem. The client wishes
to classify the media query without revealing the query to
the server.

Significance: There are some important applications
for this kind of technology. On the commercial side, there
is demand for privacy-preserving recommendation systems;
clients browsing the web could receive relevant advertise-
ments without revealing their preferences to third-party ad-
vertisers. On the medical front, medical signals like DNA
sequences could be classified against a publicly-maintained
database to diagnose irregularities. Another increasingly
important area of interest is privacy-conscious surveillance.
The FBI recently announced plans to implement a billion-
dollar program to locate wanted persons by scanning faces in
surveillance video and comparing them to a national database
[1]. This program enables an unprecedented level of govern-
ment surveillance that could easily be used to track citi-
zens’ movements. A privacy-preserving image classification
algorithm would enable such surveillance to target criminals
without invasion of privacy.

In particular, we envision a collaborative approach to surveil-
lance, in which public venues (stores, banks, etc.) with cam-
eras could receive compensation for running face extraction
software on surveillance video. The extracted faces would be
compared in a private fashion against a government database
of criminals; if a customer is not in the database, no matches
will return, and the government will learn no information
about the query. If the individual is a wanted criminal, then
the software would notify authorities. This could be cheaper
than centrally maintaining surveillance infrastructure and it
would prevent police agencies from having unfettered access
to the movements of the population.

Contributions: The main technical contribution of this
paper is a framework for one-way privacy-preserving media
classification on public databases.1 Our proposed framework
approximates Euclidean-distance nearest-neighbor searches,
and we apply it to existing Euclidean nearest-neighbor face-
recognition algorithms like Eigenfaces and Fisherfaces. The
novelty of our work stems partially from using exact infor-
mation retrieval tools to solve an inexact search problem.
However, the broader value of our work is the observation
that even using off-the-shelf privacy primitives, one-way-
private classification can be significantly faster than existing
two-way-private counterparts. This suggests that one-way
private queries require their own tools and should not be
treated as a sub-category of two-way private searches, as is
the current norm in the research community.

1By “one-way”, we mean that only the client’s privacy is
protected, not the server’s.

2. RELATED WORK
There has been a great deal of work on variants of this

problem. For instance, when a client knows exactly which
file is desired from a database, techniques like private infor-
mation retrieval or oblivious transfer enable privacy-preserving
queries [6, 7]. However, most queries are less precise and con-
sist of searches for files that contain a keyword or resemble
a query in some inexact way. Solving such a problem in the
private domain is challenging in part because cryptographic
primitives are intolerant of distortion (similar numbers be-
come dissimilar in encrypted space), while data recognition
and classification requires robustness to noise.

To address this challenge, privacy-preserving data clas-
sification has become a popular research topic in recent
years. This body of work includes privacy-preserving ma-
chine learning tools such as logistic regression [8] and sup-
port vector machines (SVM) [9], while [10] gives a nice sur-
vey of privacy-preserving nearest-neighbor methods. There
is also a great deal of application-centric research focusing
on privacy-preserving media classification (a special case of
soft signal classification). Work in this area includes au-
thentication and identification of biometrics like faces, fin-
gerprints, or ECG signals [11, 12, 13, 14, 15, 16], as well
as video analysis [17], to name a few. Algorithms in this
space tend to be heavy, with communication and computa-
tion that are asymptotically linear in the database size, and
large asymptotic constants. This inefficiency stems partially
from computationally-heavy cryptographic primitives that
require modular arithmetic and/or communication-heavy prim-
itives like garbled circuits. These tools are necessary because
existing research has almost exclusively been restricted to
private databases—that is, the client should learn nothing
about the database beyond the query’s result (in addition
to the server learning nothing about the client’s query).

We depart from the existing body of work by addressing
private search over public databases; we believe this prob-
lem will become increasingly relevant as media databases like
YouTube, Flickr, and Google Images grow in scope. Aban-
doning the realm of private databases allows us to use pri-
vacy primitives like private information retrieval (PIR) [6],
which can give significant efficiency gains in practice. To the
best of our knowledge, there are only two existing works on
private media queries over public databases: a high-level dis-
cussion of the problem in [18], and a private image similarity
search tool by Shashank et al. [19]. In contrast with [18], we
actually implement and test a private search tool, providing
valuable practical performance data. Our work differs from
[19] in that their system accepts a query image and outputs
visually similar images; they have no notion of system ac-
curacy and do not address the classification problem. We
observe both high classification accuracy and efficiency.

3. ALGORITHM
In this paper, we focus on Euclidean-distance nearest-

neighbor searches as a simple yet effective non-parametric
classifier. In general, nearest-neighbor classifiers achieve
lower accuracy levels than approaches exploiting sophisti-
cated tools like convex optimization [20]. However, some
work over the last five years has revived interest in nearest-
neighbor methods as a competitive classification tool [21].
While these techniques may not represent the state-of-the-
art, an efficient and private nearest-neighbor search is useful



of its own merit.
Consider a classic nearest-neighbor search over a feature

space describing media objects. These media objects can
include video, image, audio, or even arbitrary data requiring
‘soft’ matches, like DNA sequences. Traditionally, a server
stores one feature vector for each database entry. Upon
receiving a (noisy) query feature vector b from the client,
the server declares the closest database feature under some
metric a match; call this closest match vector a∗.

In the private domain, this approach is unacceptable be-
cause the server learns the client’s query. It is also ex-
pensive to compare distances between vectors in a private
manner (see e.g. [13, 16]). To make the algorithm privacy-
preserving, we alter the search algorithm to search for partial
exact matches. Our approach is based on the audio search
scheme of Haitsma and Kalker [22]. While their algorithm
is not privacy-preserving, it is conducive to integration with
standard privacy primitives. We will now describe a non-
private variation of their algorithm that will prove useful.

Instead of sending the client’s query feature vector b di-
rectly to the server, we divide the feature vector into chunks
of k bits, called subfingerprints. The client starts by sending
the server the first subfingerprint from its noisy feature vec-
tor. The server returns the feature vectors of all database
entries that contain a substring of k bits that match the
query’s first k bits exactly, i.e. the subfingerprints are identi-
cal. Then the client computes the Hamming distances of the
returned features from the noisy query and chooses the result
with the minimum distance (see Figure 2). After doing this
for all the subfingerprints in b (suppose there are ns sub-
fingerprints in total, collectively called a fingerprint block),
the client learns the nearest neighbor identity a∗. This algo-
rithm succeeds as long as there is at least one subfingerprint
that matches exactly between a∗ and b; the probability of
this occurring depends on the subfingerprint size k. Alterna-
tively, if the client-side noise statistics are known, one can
reduce communication and computation by accepting any
feature vector within a threshold bit error rate (BER) as a
match. This obviously gives lower recognition rates, but can
noticeably reduce resource consumption.
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Figure 2: Search toy example over a two-face database. The
client submits a subfingerprint query ‘0b01’ and receives all
fingerprint blocks containing ‘0b01’ (i.e. only George Wash-
ington). The client computes the distance between the re-
turned block and the query (e.g., Hamming distance between
the queries), then moves on to the next subfingerprint. The
smallest-distance result is declared the closest match.

3.1 Private Search Algorithm
For the private version of this algorithm, instead of send-

ing query subfingerprints in plaintext to the server, we mask
both the transmitted subfingerprints and the returned fin-
gerprint blocks using a technique called private information
retrieval. This privacy primitive can be integrated easily
with the modified algorithm above.

3.1.1 Private Information Retrieval
Private Information Retrieval (PIR) allows a client to re-

trieve data at a particular index in a database without re-
vealing the query (or the results) to the server. PIR can
be done with either a single server or multiple servers stor-
ing duplicate copies of the database. Additionally, in the
latter case, a minimum number of servers must not commu-
nicate to guarantee secrecy; so in a two-server PIR scheme,
the servers must not communicate. These anti-collusion re-
quirements are quite strong, so single-server PIR is appeal-
ing from a security standpoint. However, multi-server PIR
is significantly more efficient in practice than single-server
PIR, functioning in some schemes with sublinear asymp-
totic communication and computation costs [23, 24, 25].
Moreover, single-server PIR (with the exception of trivial
database transfer) gives only computational security, while
multi-server schemes achieve information theoretic security—
this guarantees they are secure against even computationally
unbounded adversaries. Also, the anti-collusion requirement
could be resolved by storing data on competing cloud ser-
vices such as Amazon and Google and using secure com-
munication channels between the client and servers to avoid
interception. We will address the practicality of this issue
again in the conclusion. For these reasons, we believe that
multi-server PIR can be more useful than single-server PIR
in the long run, and we focus on such schemes in this paper.
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Figure 3: Basic PIR scheme from [6]. Each of two servers
computes the bitwise sum of a seemingly-random subset of
database files. Because the two user-specified subsets differ
only at the ith index, the binary addition of each server’s
results gives the desired file.

We will now describe the basic, two-server PIR scheme
from [6]. Both servers have copies of a database comprised
of a sequence of files f0, f1, . . . , fn, and the user wishes to
retrieve the ith file, fi. The user’s request can be represented
by ei ∈ {0, 1}n, the indicator vector with a 1 at index i and
0’s elsewhere. To disguise this query, the user generates a
random string a ∈ {0, 1}n with each entry a Bernoulli(1/2)
random variable. The queries sent to servers 1 and 2 are
a ⊕ ei and a, respectively. Each server computes the inner
product of its received query vector with the database using
bitwise addition (XOR) and returns the result. The user
XORs the results from the two servers to get precisely fi.
The scheme is illustrated in Figure 3.

In an honest-but-curious adversarial model, this multi-



server PIR scheme is information theoretically secure. Most
private media search schemes rely on single-server, compu-
tationally secure primitives. While computational security
is currently ubiquitous, it could be neutralized by techno-
logical advances like quantum computing, so information-
theoretically secure solutions are ultimately safer. As men-
tioned earlier, these multi-server schemes can also be signif-
icantly more efficient than single-server ones; for instance,
organizing the database into a d-dimensional cube, where
d ≥ 2 is the number of servers, can reduce the commu-
nication to O( d

√
n), or O(

√
n) in our two-server example

[6]. There exist several other information-theoretically se-
cure PIR algorithms that achieve communication and com-
putation sublinear in database size [23, 25]. In practice, [25]
is impractical for standard database sizes due to large con-
stants in the asymptotic costs, but [23] can be practically
efficient at the expense of increased data storage. This lat-
ter scheme is therefore utilized to understand the asymptotic
efficiency of our system.
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Figure 4: One-way private search scheme example. The
two-face database is indexed by subfingerprint. The client
submits a PIR query for the first query subfingerprint ‘0b01’
and receives all fingerprint blocks containing ‘0b01’ (i.e. only
George Washington). Note that there are actually multiple
servers (not depicted), since we are using multi-server PIR.
The client computes the BER for the returned block, then
moves on to the next subfingerprint.

3.1.2 PIR Integration
To make use of PIR, we first modify the database to have

an inverted structure, indexed by subfingerprints; for k-bit
subfingerprints, the database has 2k entries. At the ith in-
dex, corresponding to the k-bit representation of subfinger-
print i, the database stores all feature vectors containing i
as one of their subfingerprints. If the query’s first subfin-
gerprint takes on value i, the client submits a PIR query for
index i, and receives from the servers all feature vectors that
contain subfingerprint i. This scheme is illustrated in Figure
4 for a face recognition example. This search algorithm is
information-theoretically secure for the client—a fact that
follows from the information-theoretic security of the PIR
scheme.

3.1.3 Noise Robustness
As presented, this search scheme implicitly assumes some

level of feature quantization that yields exact subfingerprint
matches. For arbitrary real-valued features in a Euclidean-
distance nearest-neighbor search, no such quantization will
exist. Thus we can introduce it with a hashing scheme pro-
posed by Yeo et al. [26], which is illustrated in simplified

v1
v2

h

H(v1;h) = 1

H(v2;h) = 0

Figure 5: Hashing algorithm for approximating Euclidean
distance with a Hamming distance. h is a random vector,
while v1 and v2 are two arbitrary, normalized vectors. The
hash bit is the sign of the inner product of vi and h, for
i ∈ {1, 2}.

form in Figure 5. To approximate the Euclidean distance
between two normalized vectors v1 and v2, we individually
take the inner product of both vectors with a set of randomly
drawn vectors and record the sign (+/-) of each inner prod-
uct. Let H(v;h) denote the hash bit of vector v projected
onto random vector h. If the Euclidean distance between v1

and v2 is δ, then for any random vector h, the probability
pv1,v2 that v1 and v2 have different hash bits is

pv1,v2 = P (H(v1;h) 6= H(v2;h)) =
π

2
sin−1 δ

2
. (1)

Therefore, by projecting all feature vectors onto a fixed set
of random vectors, the Hamming distance between the re-
sulting strings of hash bits gives a probabilistic estimate
of the Euclidean distance between the vectors. In partic-
ular, the expected Hamming distance of the hash vectors
is a monotonically increasing function of the Euclidean dis-
tance between the vectors. To connect this with the search
algorithm, we generate M = ns · k random projection vec-
tors, and reshape the vector of hash bits into a fingerprint
block with ns subfingerprints of k bits each; this fingerprint
block acts as a private-search-compatible feature vector and
fits into the private search algorithm described earlier. Re-
call that k determines the size of the database (there are
2k elements), so if we left the hash bits in vector form (i.e.
k = 1), the database would only have two entries: 0 and 1.
This would cause the downlink communication from PIR to
be prohibitively high. Note that the original feature vectors
in Fisherfaces are not normalized, which is a prior assump-
tion for the hashing scheme. Therefore, we normalize the
Fisherfaces feature vectors, which leads to small accuracy
losses.
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Figure 6: Conversion of arbitrary feature vectors into sub-
fingerprints. hi denotes a randomly-drawn `-dimensional
hyperplane, where ` is the original feature vector dimension.
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Figure 7: Mean recognition rate as a function of total num-
ber of hash bits, parameterized by subfingerprint length k.

4. CASE STUDY: FACE RECOGNITION
To demonstrate our framework, we designed a face recog-

nition system that relies on random hashes combined with
various face recognition algorithms. For a standard Euclidean-
distance nearest-neighbor search, we used the Eigenfaces
and Fisherfaces algorithms [27, 28]. Fisherfaces is a face
recognition algorithm that projects vectorized images onto
a carefully selected basis, chosen to give robustness to vari-
ables like lighting conditions, facial expressions, and occlu-
sions like hair and glasses. This scheme requires the client
to learn the basis of Fisherfaces in plaintext. We assume
this is acceptable for a public database, but in reality, a
server might not want to reveal this information. More gen-
erally, the feature extraction process in a media classification
scheme might require knowledge of model parameters that
the server would rather keep private.

After projecting all the database and query vectors onto
this Fisherface basis, the server finds the nearest database
neighbor in Euclidean distance to the query feature. Recog-
nition rates using Fisherfaces do not compare to the state-
of-the-art, but our objective here is simply to demonstrate
the adaptation of a well-known image recognition algorithm
to the private domain. For a privacy-preserving version of
this algorithm, we extract the Fisherfaces feature vectors
and process them using random hashing, as shown in Figure
6. This gives fingerprint blocks of ns subfingerprints that fit
directly into the PIR-based search described earlier.

To evaluate this framework, we provide both analytical
and experimental observations. For the latter, we imple-
mented a private face recognition tool in Python, simulat-
ing two servers on a single machine. This was run using the
ATT database of faces [29]. This database consists of 40
faces over a spread of 10 images each, totaling 400 images.
Tests were run on an Intel Core i7-620M processor with two
2.67 GHz processing cores and 4 GB of RAM.

4.1 Accuracy
With respect to classic Fisherfaces, accuracy levels are

impacted by three factors: normalization of feature vectors,
the hashing scheme, and the division of hash bits into subfin-
gerprints. Recall that our hashing scheme assumes that the
input vectors have unit norm; this is not the case in practice,
so we normalize our feature vectors to make the mapping be-
tween Euclidean distance and Hamming distance hold. This
leads to minor losses in algorithm accuracy, which we quan-
tify. The random hashing scheme can be driven to obtain
recognition rates that approach the nearest-neighbor accu-
racy by increasing the total number of random hash vectors
M = ns · k. Using the properties of the random hashes, we
can also determine the probability of finding an exact subfin-
gerprint match as a function of the number of subfingerprints
ns and subfingerprint length k. If b is the noisy query vec-
tor and a∗ is the correct closest match in the database, then
pb,a∗ is the bit error rate between the two hash vectors. The
probability of classification success is lower bounded by the
probability of seeing at least one exact match (let S denote
this event), which is given by

P (S) ≥ 1− (1− (1− pb,a∗)k)ns . (2)

From this expression, it follows that shorter subfingerprints
(smaller k) and more subfingerprints (larger ns) increase the
probability of finding an exact match. In general, it is dif-
ficult to estimate this probability accurately because pb,a∗

cannot be determined a priori and depends on the noise
in the system. In an uncontrolled environment, this noise
can additionally vary significantly between subjects. How-
ever, assuming some upper bound on the noise parameter
based on empirical measurement allows us to lower bound
the probability of finding an exact match, and therefore the
probability of correct classification.

Figure 7 gives empirical accuracy levels using both classic
Fisherfaces and hashed Fisherfaces with PIR (our proposed
scheme). The dataset was randomly split into 70 percent
training data and 30 percent test data. We included ac-
curacy measurements for the hierarchical scheme in [19],
though this comparison is unfair since their system is not
designed for classification. We observe that their tree-based
methods have low classification accuracy, making them ill-
suited to our problem.

To evaluate our proposed scheme, Figure 7 shows the
slightly reduced accuracy of Fisherhaces when the feature
vectors are normalized. It also shows accuracy levels for
hashed Fisherfaces without PIR (i.e. using the hash bits
as features without partitioning them into subfingerprints);
this indicates how much accuracy is lost due purely to fea-
ture hashing as opposed to the division of hash bits into
subfingerprints. For small M , hashing appears to signifi-
cantly reduce the overall accuracy, but increasing the num-
ber of total hash bits drives recognition rates toward the
non-private rates. For a fixed M , larger subfingerprints (i.e.
larger k) lower recognition rates by reducing the probabil-
ity an exact match. However, we observe that for a fixed
number of total hash bits, subfingerprints as large as 5 or 8
bits give nearly optimal accuracy levels compared to hashed
Fisherfaces without PIR.

This is significant because given feature vectors with in-
herent quantization and a good recognition rate, a PIR-
based search scheme need not reduce search accuracy sig-
nificantly. Of course, the degree of accuracy degradation
depends on system noise, but feature quantization at least
gives us a mechanism for tuning sensitivity to noise. Some



Algorithm Privacy Scheme Communication Computation

Hashed Fisherfaces 2-server PIR [23] O( 3
√
n) O

(
n/ log2 n

)
Hierarchical [19] 2-server PIR [23] O( 3

√
n) O

(
n/ log2 n

)
Eigenfaces [16] HE, Garbled Circ. [30, 31] O(n) O(n)
Eigenfaces + Backtracking [14] HE, Garbled Circ. [30, 31] O(n) O(n)

Table 1: Face recognition asymptotic communication and computation costs for privacy-preserving face recognition; ‘Hashed
Eigenfaces’ refers to our suggested scheme, and we also compare this to the online complexities of two benchmark face
recognition systems [16, 15]. We use k = logn, where k is subfingerprint length and n is database size.

examples of features with these properties include the facial
profile features by Osadchy et al. [15] and the audio features
in Haitsma and Kalker’s audio recognition system [22].

4.2 Communication and Computation
Parameter selection can impact algorithm efficiency sig-

nificantly, both in terms of communication and computation
costs. We will discuss asymptotic and experimental results.

4.2.1 Asymptotic Results
The asymptotic communication cost of this search algo-

rithm is O(max(p(2k;B),m(n)), where n is the database
size and m(n) is the expected number of exact subfinger-
print matches in the database; k is the number of bits in
each subfingerprint, and p(2k) is the total communication
complexity of a PIR search on a list of k-bit subfingerprints
(i.e. database with 2k entries).

There is a tradeoff between m(n) and p(2k) since subfin-
gerprint size determines the expected number of matches for
a fixed database size. For an asymptotic cost comparison,
we choose k as O(logn), so the expected number of matches
scales as O(1) with database size; the dominant communica-
tion cost consequently comes from uplink PIR queries. This
choice is not necessarily optimal for communication, but it
does reduce the client-side computation to O(1), which is im-
portant since the client is assumed to have limited resources.
We use this assumption on k in successive cost calculations,
but we will also address the question of how to choose k
given a total number of hash bits. Asymptotic computation
costs are also dominated by PIR, and therefore depend on
the PIR scheme.

Comparison with other algorithms is challenging, since
our work is the first to directly address private media clas-
sification on public databases (as far as we know). For
completeness, Table 1 gives asymptotic communication and
computation costs for our face recognition scheme and three
benchmark schemes private media search schemes [19, 16,
14]. The comparison with the last two schemes is unfair
since both [16] and [14] guarantee two-way privacy, thereby
solving a fundamentally harder problem. Nonetheless, we
included these schemes as representative, efficient two-way
schemes; the point is that order-level gains in asymptotic
efficiency can be had by exploiting one-way privacy. We
should point out that linear cost scaling is not inherently
problematic; the broader issue is that two-way privacy schemes
using cryptographic primitives like homomorphic encryption
and garbled circuits incur large constants that limit the prac-
tical value of the scheme. The PIR tools used in our frame-
work have a comparatively small constant factor multiplying
the asymptotic costs because they rely on bitwise addition.

The only other scheme addressing private media searches
over public databases is that of Shashank et al. [19]; how-

ever, their scheme does not directly address the classifica-
tion problem, and as such, it has inadequate classification
accuracy for our purposes. The efficiency costs for their
algorithm were computed using the same multi-server PIR
scheme for maximum efficiency [23]. Their asymptotic com-
munication and computation costs are equivalent to ours,
and additionally have smaller constants, which is to be ex-
pected from a hierarchical database structure. However,
note that the scheme in [19] requires logn rounds of com-
munication, while ours requires at most ns rounds.

Finally, we note that expanding the database in our model
is relatively straightforward. Since the Fisherfaces training
phase extracts only the top principal components from the
Fisher basis, adding files does not alter the optimal Fisher-
faces basis significantly. This means that recognition rates
will still be acceptable using the old basis. So to add a
database entry, we simply project the new image onto the
old basis of Fisherfaces and store the hash bits. The main
issue is that after adding enough faces to alter the aggregate
database characteristics, the Fisherface basis will need to
be re-trained. If the original database is large, this will only
happen after adding many new files that diverge statistically
from the old database features.

4.2.2 Empirical Results
Many of the applications we have cited will ultimately re-

quire the use of large databases, and privacy-preserving tech-
niques are much slower and more resource-hungry than non-
private ones. Since our scheme and comparable schemes in
the literature are not currently efficient enough for web-scale
applications, there is value in considering how to ultimately
make these technologies more practical. In particular, we
want to understand performance limitations of the system;
we explored these scalability issues on synthetic data.

Table 2 gives a breakdown of the computational costs for
each phase of the algorithm at different database sizes using
a linear PIR scheme; this table takes k = 5 and ns = 11. As
expected, the online runtime is much smaller than the of-
fline runtime and the online runtime is bottlenecked compu-
tationally by the PIR queries; hence the linear cost scaling
(we would expect sublinear growth using a sublinear PIR
scheme, as in Table 1). To better understand the effect of
database size on query response time, Figure 8 provides the
average online runtime for an image query using our scheme
and the scheme of Huang et al. [14]. This plot was also
generated with a linear PIR scheme [6] to emphasize the
detrimental effect of modular exponentiation on overall ef-
ficiency; even when both schemes have computational costs
that scale linearly in the database size, our scheme is an or-
der of magnitude faster. Again, our query runtime would
decrease using a sublinear PIR scheme, like [23].

Additionally, it is worth noting that the previous esti-



Database Size (n)
128 512 1024

Runtime / Bandwidth s KB s KB s KB
Offline Feature Extraction 2.9 220 ↓ 26.0 280 ↓ 76.1 280 ↓

Online
Query Feature Extraction 0.012 0 0.015 0 0.018 0

PIR Queries 0.20 0.088 ↑ + 9.5 ↓ 0.96 0.088 ↑ + 36↓ 2.3 0.088 ↑ + 72 ↓
Online Total 0.21 9.6 0.97 36.1 2.32 72.1

Table 2: Experimental algorithm runtime for the different phases of the algorithm, with k = 5, ns = 11. ↑ denotes uplink
communication while ↓ denotes downlink communication.

mates rely entirely on serial query processing. However,
each PIR query could be submitted in parallel; since PIR is
computationally-bottlenecked for large database sizes, this
would speed up the response time significantly. Note that
tree-based algorithms like that of Shashank et al. are not
easily parallelizable since each round of communication de-
pends on the previous round [19].

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

O
nl

in
e 

R
un

tim
e 

(s
ec

	)

Database Size (n)

 

 

Huang et al. [13]
Hashed Fisherfaces (ours)

Figure 8: Estimated runtime scaling for practical database
sizes. Our projections are compared to estimates for a state-
of-the-art two-way private scheme.

5. DISCUSSION
Broadly, our goal is to facilitate the integration of pri-

vacy with common technology tools. In this paper, we have
presented what we believe to be the first architecture in
the literature for private media classification over public
databases, and tested the architecture on a face recognition
system. As with most privacy-preserving algorithms, our
proposed architecture is likely not efficient enough for web-
scale databases. However, as the engineering community
pushes to develop scalable privacy-preserving tools, it is im-
portant to examine other tools besides the usual workhorses
of homomorphic encryption and garbled circuits. Indeed, as
observed in this work, we gained order-of-magnitude speedups
by fitting PIR into the media classification problem.

Important directions: In order to push these tech-
nologies to a usable level, there are some important aspects
that require more attention. For instance, media fusion (i.e.,
combining features from a variety of media forms) can boost

classification accuracy, but it is particularly challenging in
the private domain. Since privacy primitives are heavy, it
is important to manipulate as little data as possible, while
video processing typically requires higher-dimensional mul-
timedia representations of information [17]. Before imple-
menting our face recognition system, we applied our archi-
tecture to music-recognition, implying that audio and vi-
sual features are individually tractable in our framework.
Combining these features in a compact, quantized manner
remains an open problem. The task is nonetheless very im-
portant for boosting recognition rates; this would likely be
necessary for the video applications discussed in the intro-
duction, for instance.

In a similar vein, we would like to better understand how
to modify this architecture to other algorithm classes. In
particular, it is not clear that the scheme is limited in ap-
plicability to nearest-neighbor searches. With the goal of
boosting accuracy, it could be productive to apply simi-
lar concepts to potentially more complex search algorithms.
In particular, there has been interest recently in privacy-
preserving machine learning techniques, such as logistic re-
gression [8].

Another direction for future work focuses on the practi-
cality and efficiency of PIR itself. For instance, one of the
most problematic assumptions of multi-server PIR is the
anti-collusion requirement. To relax this assumption, there
exist PIR schemes that increase the number of servers that
need to collude in order to break information-theoretic secu-
rity [32]. Along these lines, it is important to push for more
efficient and robust PIR schemes.

Private media recognition over public databases has the
potential to become an important tool, particularly given
the current social and technological landscape. It seems
that information-theoretic PIR tools could eventually lead to
tools efficient enough for integration into the public sphere,
particularly in domains like privacy-preserving surveillance
or recommendation systems.
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